Optimization of Controlled-Z Gate with Data-Driven Gradient Ascent Pulse Engineering in a Superconducting Qubit System

  1. Zhiwen Zong,
  2. Zhenhai Sun,
  3. Zhangjingzi Dong,
  4. Chongxin Run,
  5. Liang Xiang,
  6. Ze Zhan,
  7. Qianlong Wang,
  8. Ying Fei,
  9. Yaozu Wu,
  10. Wenyan Jin,
  11. Cong Xiao,
  12. Zhilong Jia,
  13. Peng Duan,
  14. Jianlan Wu,
  15. Yi Yin,
  16. and Guoping Guo
The experimental optimization of a two-qubit controlled-Z (CZ) gate is realized following two different data-driven gradient ascent pulse engineering (GRAPE) protocols in the aim of
optimizing the gate operator and the output quantum state, respectively. For both GRAPE protocols, the key computation of gradients utilizes mixed information of the input Z-control pulse and the experimental measurement. With an imperfect initial pulse in a flattop waveform, our experimental implementation shows that the CZ gate is quickly improved and the gate fidelities subject to the two optimized pulses are around 99%. Our experimental study confirms the applicability of the data-driven GRAPE protocols in the problem of the gate optimization.

Random walk on the Bloch sphere realized by a simultaneous feedback and feed-forward control in a superconducting Xmon qubit system

  1. Liang Xiang,
  2. Zhiwen Zong,
  3. Zhenhai Sun,
  4. Ze Zhan,
  5. Ying Fei,
  6. Zhangjingzi Dong,
  7. Chongxin Run,
  8. Zhilong Jia,
  9. Peng Duan,
  10. Jianlan Wu,
  11. Yi Yin,
  12. and Guoping Guo
Measurement-based feedback control is central in quantum computing and precise quantum control. Here we realize a fast and flexible field-programmable-gate-array-based feedback control
in a superconducting Xmon qubit system. The latency of room-temperature electronics is custom optimized to be as short as 140 ns. Projective measurement of a signal qubit produces a feedback tag to actuate a conditional pulse gate to the qubit. In a feed-forward process, the measurement-based feedback tag is brought to a different target qubit for a conditional control. In a two-qubit experiment, the feedback and feed-forward controls are simultaneously actuated in consecutive steps. A quantum number is then generated by the signal qubit, and a random walk of the target qubit is correspondingly triggered and realized on the Bloch sphere. Our experiment provides a conceptually simple and intuitive benchmark for the feedback control in a multi-qubit system. The feedback control can also be further explored to study complex stochastic quantum control.

Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit

  1. P. Z. Zhao,
  2. Zhangjingzi Dong,
  3. Zhenxing Zhang,
  4. Guoping Guo,
  5. D.M. Tong,
  6. and Yi Yin
Geometric phases are only dependent on evolution paths but independent of evolution details so that they own some intrinsic noise-resilience features. Based on different geometric phases,
various quantum gates have been proposed, such as nonadiabatic geometric gates based on nonadiabatic Abelian geometric phases and nonadiabatic holonomic gates based on nonadiabatic non-Abelian geometric phases. Up to now, nonadiabatic holonomic one-qubit gates have been experimentally demonstrated with the supercondunting transmon, where three lowest levels with cascaded configuration are all applied in the operation. However, the second excited states of transmons have relatively short coherence time, which results in a lessened fidelity of quantum gates. Here, we experimentally realize Abelian-geometric-phase-based nonadiabatic geometric one-qubit gates with a superconducting Xmon qubit. The realization is performed on two lowest levels of an Xmon qubit and thus avoids the influence from the short coherence time of the second excited state. The experimental result indicates that the average fidelities of single-qubit gates can be up to 99.6% and 99.7% characterized by quantum process tomography and randomized benchmarking, respectively.