I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
18
Jun
2021
Electron on solid neon — a new solid-state single-electron qubit platform
The promise of quantum computing has driven a persistent quest for new qubit platforms with long coherence, fast operation, and large scalability. Electrons, ubiquitous elementary particles
of nonzero charge, spin, and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits via either motional or spin states depends critically on their material environment. Here we report our experimental realization of a new qubit platform based upon isolated single electrons trapped on an ultraclean solid neon surface in vacuum. By integrating an electron trap in a circuit quantum electrodynamics architecture, we achieve strong coupling between the motional states of a single electron and microwave photons in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are used to measure the energy relaxation time T1 of 15 μs and phase coherence time T2 over 200 ns, indicating that the electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
Perspective: Reproducible Coherence Characterization of Superconducting Quantum Devices
As the field of superconducting quantum computing approaches maturity, optimization of single-device performance is proving to be a promising avenue towards large-scale quantum computers.
However, this optimization is possible only if performance metrics can be accurately compared among measurements, devices, and laboratories. Currently such comparisons are inaccurate or impossible due to understudied errors from a plethora of sources. In this Perspective, we outline the current state of error analysis for qubits and resonators in superconducting quantum circuits, and discuss what future investigations are required before superconducting quantum device optimization can be realized.
16
Jun
2021
Drive-induced nonlinearities of cavity modes coupled to a transmon ancilla
High-Q microwave cavity modes coupled to transmon ancillas provide a hardware-efficient platform for quantum computing. Due to their coupling, the cavity modes inherit finite nonlinearity
from the transmons. In this work, we theoretically and experimentally investigate how an off-resonant drive on the transmon ancilla modifies the nonlinearities of cavity modes in qualitatively different ways, depending on the interrelation among cavity-transmon detuning, drive-transmon detuning and transmon anharmonicity. For a cavity-transmon detuning that is smaller than or comparable to the drive-transmon detuning and transmon anharmonicity, the off-resonant transmon drive can induce multiphoton resonances among cavity and transmon excitations that strongly modify cavity nonlinearities as drive parameters vary. For a large cavity-transmon detuning, the drive induces cavity-photon-number-dependent ac Stark shifts of transmon levels that translate into effective cavity nonlinearities. In the regime of a weak transmon-cavity coupling, the cavity Kerr nonlinearity relates to the third-order nonlinear susceptibility function χ(3) of the driven ancilla. This susceptibility function provides a numerically efficient way of computing the cavity Kerr particularly for systems with many cavity modes controlled by a single transmon. It also serves as a diagnostic tool for identifying undesired drive-induced multiphoton resonance processes. Lastly, we show that by judiciously choosing the drive amplitude, a single off-resonant transmon drive can be used to cancel the cavity self-Kerr nonlinearity as well as inter-cavity cross-Kerr. This provides a way of dynamically correcting the cavity Kerr nonlinearity during bosonic operations or quantum error correction protocols that rely on the cavity modes being linear.
Optical Direct Write of Dolan-Bridge Junctions for Transmon Qubits
We characterize highly coherent transmon qubits fabricated with a direct-write photolithography system. Multi-layer evaporation and oxidation allows us to tune the Josephson energy
by reducing the effective tunneling area and increasing the barrier thickness. Surface treatments before resist application and again before evaporation reduce the occurrence of strongly-coupled two-level system fluctuators, resulting in high coherence devices. With optimized surface treatments we achieve energy relaxation T1 times in excess of 80 μs for three dimensional transmon qubits with Josephson junction lithographic areas of 2 μm2.
15
Jun
2021
Low frequency correlated charge noise measurements across multiple energy transitions in a tantalum transmon
Transmon qubits fabricated with tantalum metal have been shown to possess energy relaxation times greater than 300 μs and, as such, present an attractive platform for high precision,
correlated noise studies across multiple higher energy transitions. Tracking the multi-level fluctuating qudit frequencies over the course of hours and even days, with a precision enabled by the high coherence of the device, allows us to extract the underlying charge offset and quasi-particle dynamics. We observe qualitatively different charge offset dynamics in the tantalum device than those measured in previous low frequency charge noise studies. In particular, we find the charge offset dynamics dominated by rare, discrete charge offset jumps between a finite number of quasi-stationary charge configurations, a previously unobserved charge noise process in superconducting qubits.
11
Jun
2021
A practical guide for building superconducting quantum devices
Quantum computing offers a powerful new paradigm of information processing that has the potential to transform a wide range of industries. In the pursuit of the tantalizing promises
of a universal quantum computer, a multitude of new knowledge and expertise has been developed, enabling the construction of novel quantum algorithms as well as increasingly robust quantum hardware. In particular, we have witnessed rapid progress in the circuit quantum electrodynamics (cQED) technology, which has emerged as one of the most promising physical systems that is capable of addressing the key challenges in realizing full-stack quantum computing on a large scale. In this article, we present some of the most crucial building blocks developed by the cQED community in recent years and a précis of the latest achievements towards robust universal quantum computation. More importantly, we aim to provide a synoptic outline of the core techniques that underlie most cQED experiments and offer a practical guide for a novice experimentalist to design, construct, and characterize their first quantum device
10
Jun
2021
Coherent control of a symmetry-engineered multi-qubit dark state in waveguide quantum electrodynamics
Quantum information is typically encoded in the state of a qubit that is decoupled from the environment. In contrast, waveguide quantum electrodynamics studies qubits coupled to a mode
continuum, exposing them to a loss channel and causing quantum information to be lost before coherent operations can be performed. Here we restore coherence by realizing a dark state that exploits symmetry properties and interactions between four qubits. Dark states decouple from the waveguide and are thus a valuable resource for quantum information but also come with a challenge: they cannot be controlled by the waveguide drive. We overcome this problem by designing a drive that utilizes the symmetry properties of the collective state manifold allowing us to selectively drive both bright and dark states. The decay time of the dark state exceeds that of the waveguide-limited single qubit by more than two orders of magnitude. Spectroscopy on the second excitation manifold provides further insight into the level structure of the hybridized system. Our experiment paves the way for implementations of quantum many-body physics in waveguides and the realization of quantum information protocols using decoherence-free subspaces.
Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction
There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one the inductor is replaced by a nonlinear Josephson junction to
realize the widely used charge qubits with a compact phase variable and a discrete charge wavefunction. In the other the junction is added in parallel, which gives rise to an extended phase variable, continuous wavefunctions and a rich energy level structure due to the loop topology. While the corresponding rf-SQUID Hamiltonian was introduced as a quadratic, quasi-1D potential approximation to describe the fluxonium qubit implemented with long Josephson junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasi-charge qubit with strongly enhanced zero point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high precision of the inductive and capacitive energy as guaranteed by top-down lithography – a key ingredient for intrinsically protected superconducting qubits. The geometric fluxonium also exhibits a large magnetic dipole, which renders it an interesting new candidate for quantum sensing applications.
Material matters in superconducting qubits
The progress witnessed within the field of quantum computing has been enabled by the identification and understanding of interactions between the state of the quantum bit (qubit) and
the materials within its environment. Beginning with an introduction of the parameters used to differentiate various quantum computing approaches, we discuss the evolution of the key components that comprise superconducting qubits, where the methods of fabrication can play as important a role as the composition in dictating the overall performance. We describe several mechanisms that are responsible for the relaxation or decoherence of superconducting qubits and the corresponding methods that can be utilized to characterize their influence. In particular, the effects of dielectric loss and its manifestation through the interaction with two-level systems (TLS) are discussed. We elaborate on the methods that are employed to quantify dielectric loss through the modeling of energy flowing through the surrounding dielectric materials, which can include contributions due to both intrinsic TLS and extrinsic aspects, such as those generated by processing. The resulting analyses provide insight into identifying the relative participation of specific sections of qubit designs and refinements in construction that can mitigate their impact on qubit quality factors. Additional prominent mechanisms that can lead to energy relaxation within qubits are presented along with experimental techniques which assess their importance. We close by highlighting areas of future research that should be addressed to help facilitating the successful scaling of superconducting quantum computing.
09
Jun
2021
CircuitQ: An open-source toolbox for superconducting circuits
We introduce CircuitQ, an open-source toolbox for the analysis of superconducting circuits implemented in Python. It features the automated construction of a symbolic Hamiltonian of
the input circuit, as well as a dynamic numerical representation of this Hamiltonian with a variable basis choice. Additional features include the estimation of the T1 lifetimes of the circuit states under various noise mechanisms. We review previously established circuit quantization methods and formulate them in a way that facilitates the software implementation. The toolbox is then showcased by applying it to practically relevant qubit circuits and comparing it to specialized circuit solvers. Our circuit quantization is both applicable to circuit inputs from a large design space and the software is open-sourced. We thereby add an important toolbox for the design of new quantum circuits for quantum information processing applications.