I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
04
Nov
2021
Cooper pairs localization in tree-like networks of superconducting islands
We study inhomogeneous Cooper pairs distribution and localization effects in tree-like networks of superconducting islands coupled via Josephson weak links. Using a generalized Feynman’s
approach, reminiscent of the Bose-Hubbard model, we demonstrate that the Cooper pairs fraction which localizes on a specific network’s island is limited by the network topology and, if present, by the repulsive interaction. These findings contribute to clarify the interplay between confinement effects induced by the network’s topology and interaction and shed some light on recent experiments dealing with networks of Josephson junctions.
02
Nov
2021
Nonadiabatic geometric quantum computation with shortened path on superconducting circuits
Recently, nonadiabatic geometric quantum computation has been received much attention, due to its fast manipulation and intrinsic error-resilience characteristics. However, to obtain
universal geometric quantum control, only limited and special evolution paths have been proposed, which usually requires longer gate-time and more operational steps, and thus leads to lower quality of the implemented quantum gates. Here, we present an effective scheme to find the shortest geometric path under the conventional conditions of geometric quantum computation, where high-fidelity and robust geometric gates can be realized by only single-loop evolution, and the gate performances are better than the corresponding dynamical ones. Furthermore, we can optimize the pulse shapes in our scheme to further shorten the gate-time, determined by how fast the path is travelled. In addition, we also present its physical implementation on superconducting circuits, consisting of capacitively coupled transmon qubits, where the fidelities of geometric single- and two-qubit gates can be higher than 99.95% and 99.80% within the current state-of-the-art experimental technologies, respectively. These results indicate that our scheme is promising for large-scale fault-tolerant quantum computation.
01
Nov
2021
Improved superconducting qubit state readout by path interference
High fidelity single shot qubit state readout is essential for many quantum information processing protocols. In superconducting quantum circuit, the qubit state is usually determined
by detecting the dispersive frequency shift of a microwave cavity from either transmission or reflection. In this paper, we demonstrate the use of constructive interference between the transmitted and reflected signal to optimize the qubit state readout, with which we find a better resolved state discrimination and an improved qubit readout fidelity. As a simple and convenient approach, our scheme can be combined with other qubit readout methods based on the discrimination of cavity photon states to further improve the qubit state readout.
Magnetic-field resilience of 3D transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T
Magnetic-field-resilient superconducting circuits enable sensing applications and hybrid quantum-computing architectures involving spin or topological qubits and electro-mechanical
elements, as well as studying flux noise and quasiparticle loss. We investigate the effect of in-plane magnetic fields up to 1 T on the spectrum and coherence times of thin-film 3D aluminum transmons. Using a copper cavity, unaffected by strong magnetic fields, we can solely probe the magnetic-field effect on the transmons. We present data on a single-junction and a SQUID transmon, that were cooled down in the same cavity. As expected, transmon frequencies decrease with increasing fields, due to a suppression of the superconducting gap and a geometric Fraunhofer-like contribution. Nevertheless, the thin-film transmons show strong magnetic-field resilience: both transmons display microsecond coherence up to at least 0.65 T, and T1 remains above 1 μs over the entire measurable range. SQUID spectroscopy is feasible up to 1 T, the limit of our magnet. We conclude that thin-film aluminum Josephson junctions are a suitable hardware for superconducting circuits in the high-magnetic-field regime.
28
Okt
2021
Can the displacemon device test objective collapse models?
Testing the limits of the applicability of quantum mechanics will deepen our understanding of the universe and may shed light on the interplay between quantum mechanics and gravity.
At present there is a wide range of approaches for such macroscopic tests spanning matter-wave interferometry of large molecules to precision measurements of heating rates in the motion of micro-scale cantilevers. The „displacemon“ is a proposed electromechanical device consisting of a mechanical resonator flux coupled to a superconducting qubit, which could be used to generate and observe quantum interference between centre-of-mass trajectories in the motion of a resonator. In the original proposal, the mechanical resonator was a carbon nanotube, containing 106 nucleons. Such a superposition would be massive by comparison to the present state-of-the-art, but still small compared with the mass scales on which we might feasibly test objective collapse models. Here, instead of a carbon nanotube, we propose using an aluminium mechanical resonator on two larger mass scales, one inspired by the Marshall-Simon-Penrose-Bouwmeester moving-mirror proposal, and one set by the Planck mass. For such a device, we examine the experimental requirements needed to perform a more macroscopic quantum test and thus feasibly detect the decoherence effects predicted by two objective collapse models: Diósi-Penrose and continuous spontaneous localization. Our protocol for testing these two theories takes advantage of the displacemon architecture by analyzing the measurement statistics of a superconducting qubit. We find that with improvements to the fabrication and vibration sensitivities of these electromechanical devices, the displacemon interferometer provides a new route to feasibly test decoherence mechanisms beyond standard quantum theory.
25
Okt
2021
Design of Novel Coupling Mechanisms between Superconducting Flux Qubits
We have analyzed and proposed coupling mechanisms between Three Josephson Junction Flux Qubits (3JJQ). For this, we have developed a numerical method to extract the effective Hamiltonian
of a system of coupled qubits via the Schrieffer-Wolff transformation (SWT). We then give a comprehensive introduction to the 3JJQ, and study it analytically by approximating its potential with a Harmonic well. With a clear understanding of the 3JJQs, we use the SWT to gain intuition about their effective dipolar interaction with the electromagnetic field, and use that intuition to propose and study analytically and numerically the capacitive coupling of two 3JJQs via a non-tunable capacitor, and the inductive coupling of two 3JJQs via a tunable Josephson Junction (dc-SQUID), showing that we are able to reproduce non-stoquastic Hamiltonians in the strong-coupling regime.
Quantum crosstalk analysis for simultaneous gate operations on superconducting qubits
Maintaining or even improving gate performance with growing numbers of parallel controlled qubits is a vital requirement towards fault-tolerant quantum computing. For superconducting
quantum processors, though isolated one- or two-qubit gates have been demonstrated with high-fidelity, implementing these gates in parallel commonly show worse performance. Generally, this degradation is attributed to various crosstalks between qubits, such as quantum crosstalk due to residual inter-qubit coupling. An understanding of the exact nature of these crosstalks is critical to figuring out respective mitigation schemes and improved qubit architecture designs with low crosstalk. Here we give a theoretical analysis of quantum crosstalk impact on simultaneous gate operations in a qubit architecture, where fixed-frequency transmon qubits are coupled via a tunable bus, and sub-100-ns controlled-Z (CZ) gates can be realized by applying a baseband flux pulse on the bus. Our analysis shows that for microwave-driven single qubit gates, the dressing from qubit-qubit coupling can cause non-negligible cross-driving errors when qubits operate near frequency collision regions. During CZ gate operations, although unwanted near-neighbor interactions are nominally turned off, sub-MHz parasitic next-near-neighbor interactions involving spectator qubits can still exist, causing considerable leakage or control error when one operates qubit systems around these parasitic resonance points. To ensure high-fidelity simultaneous operations, this could rise a request to figure out a better way to balance the gate error from target qubit systems themselves and the error from non-participating spectator qubits. Overall, our analysis suggests that towards useful quantum processors, the qubit architecture should be examined carefully in the context of high-fidelity simultaneous gate operations in a scalable qubit lattice.
22
Okt
2021
Error-divisible two-qubit gates
We introduce a simple, widely applicable formalism for designing „error-divisible“ two qubit gates: a quantum gate set where fractional rotations have proportionally reduced
error compared to the full entangling gate. In current noisy intermediate-scale quantum (NISQ) algorithms, performance is largely constrained by error proliferation at high circuit depths, of which two-qubit gate error is generally the dominant contribution. Further, in many hardware implementations, arbitrary two qubit rotations must be composed from multiple two-qubit stock gates, further increasing error. This work introduces a set of criteria, and example waveforms and protocols to satisfy them, using superconducting qubits with tunable couplers for constructing continuous gate sets with significantly reduced error for small-angle rotations. If implemented at scale, NISQ algorithm performance would be significantly improved by our error-divisible gate protocols.
21
Okt
2021
Active resonator depletion with short microwave pulses
We propose a physical model to explain the phenomenon of photon depletion in superconducting microwave resonators in the dispersive regime, coupled to Josephson junction qubits, via
short microwave pulses. We discuss the conditions for matching the amplitude and phase of the pulse optimally within the framework of the model, allowing for significant reductions in reset times after measurement of the qubits. We consider how to deal with pulses and transient dynamics within the input-output formalism, along with a reassessment of the underlying assumptions for a wide-band pulse.
20
Okt
2021
Machine Learning for Continuous Quantum Error Correction on Superconducting Qubits
We propose a machine learning algorithm for continuous quantum error correction that is based on the use of a recurrent neural network to identity bit-flip errors from continuous noisy
syndrome measurements. The algorithm is designed to operate on measurement signals deviating from the ideal behavior in which the mean value corresponds to a code syndrome value and the measurement has white noise. We analyze continuous measurements taken from a superconducting architecture using three transmon qubits to identify three significant practical examples of non-ideal behavior, namely auto-correlation at temporal short lags, transient syndrome dynamics after each bit-flip, and drift in the steady-state syndrome values over the course of many experiments. Based on these real-world imperfections, we generate synthetic measurement signals from which to train the recurrent neural network, and then test its proficiency when implementing active error correction, comparing this with a traditional double threshold scheme and a discrete Bayesian classifier. The results show that our machine learning protocol is able to outperform the double threshold protocol across all tests, achieving a final state fidelity comparable to the discrete Bayesian classifier.