As quantum information technologies advance they face challenges in scaling and connectivity. In particular, two necessities remain independent of the technological implementation:the need for connectivity between distant qubits and the need for efficient generation of entanglement. Perfect State Transfer is a technique which realises the time optimal transfer of a quantum state between distant nodes of qubit lattices with only nearest-neighbour couplings, hence providing an important tool to improve device connectivity. Crucially, the transfer protocol results in effective parity-dependent non-local interactions, extending its utility to the efficient generation of entangled states. Here, we experimentally demonstrate Perfect State Transfer and the generation of multi-qubit entanglement on a chain of superconducting qubits. The system consists of six fixed-frequency transmon qubits connected by tunable couplers, where the couplings are controlled via parametric drives. By simultaneously activating all couplings and engineering their individual amplitudes and frequencies, we implement Perfect State Transfer on up to six qubits and observe the respective single-excitation dynamics for different initial states. We then apply the protocol in the presence of multiple excitations and verify its parity-dependent property, where the number of excitations within the chain controls the phase of the transferred state. Finally, we utilise this property to prepare a multi-qubit Greenberger-Horne-Zeilinger state using only a single transfer operation, demonstrating its application for efficient entanglement generation.

To control and measure the state of a quantum system it must necessarily be coupled to external degrees of freedom. This inevitably leads to spontaneous emission via the Purcell effect,photon-induced dephasing from measurement back-action, and errors caused by unwanted interactions with nearby quantum systems. To tackle this fundamental challenge, we make use of the design flexibility of superconducting quantum circuits to form a multi-mode element — an artificial molecule — with symmetry-protected modes. The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions. It exhibits two essential non-linear modes, one of which is flux-insensitive and used as the protected qubit mode. The second mode is flux-tunable and serves via a cross-Kerr type coupling as a mediator to control the dispersive coupling of the qubit mode to the readout resonator. We demonstrate the Purcell protection of the qubit mode by measuring relaxation times that are independent of the mediated dispersive coupling. We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator and thereby reducing the dispersive coupling. The resulting highly protected qubit with tunable interactions may serve as a basic building block of a scalable quantum processor architecture, in which qubit decoherence is strongly suppressed.

The utility of classical neural networks as universal approximators suggests that their quantum analogues could play an important role in quantum generalizations of machine-learningmethods. Inspired by the proposal in [Torrontegui and García-Ripoll 2019 EPL 125 30004], we demonstrate a superconducting qubit implementation of an adiabatic controlled gate, which generalizes the action of a classical perceptron as the basic building block of a quantum neural network. We show full control over the steepness of the perceptron activation function, the input weight and the bias by tuning the adiabatic gate length, the coupling between the qubits and the frequency of the applied drive, respectively. In its general form, the gate realizes a multi-qubit entangling operation in a single step, whose decomposition into single- and two-qubit gates would require a number of gates that is exponential in the number of qubits. Its demonstrated direct implementation as perceptron in quantum hardware may therefore lead to more powerful quantum neural networks when combined with suitable additional standard gates.

To Characterize and calibrate quantum processing devices a large amount of measurement data has to be collected. Active qubit reset increases the speed at which data can be gatheredbut requires additional hardware and/or calibration. The experimental apparatus can, however, be operated at elevated repetition rates without reset. In this case, the outcome of a first measurement serves as the initial state for the next experiment. Rol. et al. used this restless operation mode to accelerate the calibration of a single-qubit gate by measuring fixed-length sequences of Clifford gates which compose to X gates [Phys. Rev. Appl. 7, 041001 (2017)]. However, we find that, when measuring pulse sequences which compose to arbitrary operations, a distortion appears in the measured data. Here, we extend the restless methodology by showing how to efficiently analyze restless measurements and correct distortions to achieve an identical outcome and accuracy as compared to measurements in which the superconducting qubits are reset. This allows us to rapidly characterize and calibrate qubits. We illustrate our data collection and analysis method by measuring a Rabi oscillation at a 250 kHz repetition rate without any reset, for a qubit with a decay rate of 1/2πT1=3 kHz.
We also show that we can measure a single- and a two-qubit average gate fidelity with Randomized Benchmarking 20 and 8 times faster, respectively, than measurements that reset the qubits through T1-decay.

Efforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, a highly detailedsystem characterization required to understand the underlying errors is an arduous process and impractical with increasing chip size. Open-loop optimal control techniques allow for the improvement of gates but are limited by the models they are based on. To rectify the situation, we provide a new integrated open-source tool-set for Control, Calibration and Characterization (C3), capable of open-loop pulse optimization, model-free calibration, model fitting and refinement. We present a methodology to combine these tools to find a quantitatively accurate system model, high-fidelity gates and an approximate error budget, all based on a high-performance, feature-rich simulator. We illustrate our methods using fixed-frequency superconducting qubits for which we learn model parameters to an accuracy of <1% and derive a coherence limited cross-resonance (CR) gate that achieves 99.6% fidelity without need for calibration. [/expand]

Reaching high speed, high fidelity qubit operations requires precise control over the shape of the underlying pulses. For weakly anharmonic systems, such as superconducting transmonqubits, short gates lead to leakage to states outside of the computational subspace. Control pulses designed with open-loop optimal control may reduce such leakage. However, model inaccuracies can severely limit the usability of such pulses. We implemented a closed-loop optimization that simultaneously adapts all control parameters based on measurements of a cost function built from Clifford gates. By parameterizing pulses with a piecewise-constant representation that matches the capabilities of the control hardware we create a 4.16 ns single-qubit pulse with 99.76% fidelity and 0.044% leakage. This is a seven-fold reduction of the leakage rate of the best DRAG pulse we have calibrated at such short durations on the same system.