Fluxonium: an alternative qubit platform for high-fidelity operations

  1. Feng Bao,
  2. Hao Deng,
  3. Dawei Ding,
  4. Ran Gao,
  5. Xun Gao,
  6. Cupjin Huang,
  7. Xun Jiang,
  8. Hsiang-Sheng Ku,
  9. Zhisheng Li,
  10. Xizheng Ma,
  11. Xiaotong Ni,
  12. Jin Qin,
  13. Zhijun Song,
  14. Hantao Sun,
  15. Chengchun Tang,
  16. Tenghui Wang,
  17. Feng Wu,
  18. Tian Xia,
  19. Wenlong Yu,
  20. Fang Zhang,
  21. Gengyan Zhang,
  22. Xiaohang Zhang,
  23. Jingwei Zhou,
  24. Xing Zhu,
  25. Yaoyun Shi,
  26. Jianxin Chen,
  27. Hui-Hai Zhao,
  28. and Chunqing Deng
Superconducting qubits provide a promising path toward building large-scale quantum computers. The simple and robust transmon qubit has been the leading platform, achieving multiple milestones. However, fault-tolerant quantum computing calls for qubit operations at error rates significantly lower than those exhibited in the state of the art. Consequently, alternative superconducting qubits with better error protection have attracted increasing interest. Among them, fluxonium is a particularly promising candidate, featuring large anharmonicity and long coherence times. Here, we engineer a fluxonium-based quantum processor that integrates high qubit-coherence, fast frequency-tunability, and individual-qubit addressability for reset, readout, and gates. With simple and fast gate schemes, we achieve an average single-qubit gate fidelity of 99.97% and a two-qubit gate fidelity of up to 99.72%. This performance is comparable to the highest values reported in the literature of superconducting circuits. Thus our work, for the first time within the realm of superconducting qubits, reveals an approach toward fault-tolerant quantum computing that is alternative and competitive to the transmon system.

leave comment