The promise of quantum computing has driven a persistent quest for new qubit platforms with long coherence, fast operation, and large scalability. Electrons, ubiquitous elementary particlesof nonzero charge, spin, and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits via either motional or spin states depends critically on their material environment. Here we report our experimental realization of a new qubit platform based upon isolated single electrons trapped on an ultraclean solid neon surface in vacuum. By integrating an electron trap in a circuit quantum electrodynamics architecture, we achieve strong coupling between the motional states of a single electron and microwave photons in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are used to measure the energy relaxation time T1 of 15 μs and phase coherence time T2 over 200 ns, indicating that the electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
Coherent photon conversion between microwave and optics holds promise for the realization of distributed quantum networks, in particular, the architecture that incorporates superconductingquantum processors with optical telecommunication channels. High-frequency gigahertz piezo-mechanics featuring low thermal excitations offers an ideal platform to mediate microwave-optical coupling. However, integrating nanophotonic and superconducting circuits at cryogenic temperatures to simultaneously achieve strong photon-phonon interactions remains a tremendous challenge. Here, we report the first demonstration of an integrated superconducting cavity piezo-optomechanical converter where 10-GHz phonons are resonantly coupled with photons in a superconducting microwave and a nanophotonic cavities at the same time. Benefited from the cavity-enhanced interactions, efficient bidirectional microwave-optical photon conversion is realized with an on-chip efficiency of 0.07% and an internal efficiency of 5.8%. The demonstrated superconducting piezo-optomechanical interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in hybrid quantum systems such as microwave-optical photon entanglement and quantum sensing.
We present a generic theoretical framework to describe non-reciprocal microwave circulation in a multimode cavity magnonic system and assess the optimal performance of practical circulatordevices. We show that high isolation (> 56 dB), extremely low insertion loss (< 0.05 dB), and flexible bandwidth control can be potentially realized in high-quality-factor superconducting cavity based magnonic platforms. These circulation characteristics are analyzed with materials of different spin densities. For high-spin-density materials such as yttrium iron garnet, strong coupling operation regime can be harnessed to obtain a broader circulation bandwidth. We also provide practical design principles for a highly integratible low-spin-density material (vanadium tetracyanoethylene) for narrow-band circulator operation, which could benefit noise-sensitive quantum microwave measurements. This theory can be extended to other coupled systems and provide design guidelines for achieving tunable microwave non-reciprocity for both classical and quantum applications.[/expand]
Cooling microwave resonators to near the quantum ground state, crucial for their operation in the quantum regime, is typically achieved by direct device refrigeration to a few tensof millikelvin. However, in quantum experiments that require high operation power such as microwave-to-optics quantum transduction, it is desirable to operate at higher temperatures with non-negligible environmental thermal excitations, where larger cooling power is available. In this Letter, we present a radiative cooling protocol to prepare a superconducting microwave mode near its quantum ground state in spite of warm environment temperatures for the resonator. In this proof-of-concept experiment, the mode occupancy of a 10-GHz superconducting resonator thermally anchored at 1.02~K is reduced to 0.44±0.05 by radiatively coupling to a 70-mK cold load. This radiative cooling scheme allows high-operation-power microwave experiments to work in the quantum regime, and opens possibilities for routing microwave quantum states to elevated temperatures.
The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on thephoton-induced-dephasing process of a superconducting qubit for sensing microwave radiation at the sub-unit-photon level. Using this radiometer, we demonstrated the radiative cooling of a 1-K microwave resonator and measured its mode temperature with an uncertainty ~0.01 K. We have thus developed a precise tool for studying the thermodynamics of quantum microwave circuits, which provides new solutions for calibrating hybrid quantum systems and detecting candidate particles for dark matter.
Leveraging the quantum information processing ability of superconducting circuits and long-distance distribution ability of optical photons promises the realization of complex and large-scalequantum networks. In such a scheme, a coherent and efficient quantum transducer between superconducting and photonic circuits is critical. However, such quantum transducer is still challenging since the use of intermediate excitations in current schemes introduces extra noise and limits bandwidth. Here we realize direct and coherent transduction between superconducting and photonic circuits based on triple-resonance electro-optics principle, with integrated devices incorporating both superconducting and optical cavities on the same chip. Electromagnetically induced transparency is observed, indicating the coherent interaction between microwave and optical photons. Internal conversion efficiency of 25.9\pm0.3\% has been achieved, with 2.05\pm0.04\% total efficiency. Superconducting cavity electro-optics offers broad transduction bandwidth and high scalability, and represents a significant step towards the integrated hybrid quantum circuits and distributed quantum computation.