Placing and Routing Non-Local Quantum Error Correcting Codes in Multi-Layer Superconducting Qubit Hardware

  1. Melvin Mathews,
  2. Lukas Pahl,
  3. David Pahl,
  4. Vaishnavi L. Addala,
  5. Catherine Tang,
  6. William D. Oliver,
  7. and Jeffrey A. Grover
Quantum error correcting codes (QECCs) with asymptotically lower overheads than the surface code require non-local connectivity. Leveraging multi-layer routing and long-range coupling
capabilities in superconducting qubit hardware, we develop Hardware-Aware Layout, HAL: a robust, runtime-efficient heuristic algorithm that automates and optimizes the placement and routing of arbitrary QECCs. Using HAL, we perform a comparative study of hardware cost across various families of QECCs, including the bivariate bicycle codes, the open-boundary tile codes, and the constant-depth-decodable radial codes. The layouts produced by HAL confirm that open boundaries significantly reduce the hardware cost, while incurring reductions in logical efficiency. Among the best-performing codes were low-weight radial codes, despite lacking topological structure. Overall, HAL provides a valuable framework for evaluating the hardware feasibility of existing QECCs and guiding the discovery of new codes compatible with realistic hardware constraints.

Improving Transmon Qubit Performance with Fluorine-based Surface Treatments

  1. Michael A. Gingras,
  2. Bethany M. Niedzielski,
  3. Kevin A. Grossklaus,
  4. Duncan Miller,
  5. Felipe Contipelli,
  6. Kate Azar,
  7. Luke D Burkhart,
  8. Gregory Calusine,
  9. Daniel Davis,
  10. Renée DePencier Piñero,
  11. Jeffrey M. Gertler,
  12. Thomas M. Hazard,
  13. Cyrus F. Hirjibehedin,
  14. David K. Kim,
  15. Jeffrey M. Knecht,
  16. Alexander J. Melville,
  17. Christopher O'Connell,
  18. Robert A. Rood,
  19. Ali Sabbah,
  20. Hannah Stickler,
  21. Jonilyn L. Yoder,
  22. William D. Oliver,
  23. Mollie E. Schwartz,
  24. and Kyle Serniak
Reducing materials and processing-induced decoherence is critical to the development of utility-scale quantum processors based on superconducting qubits. Here we report on the impact
of two fluorine-based wet etches, which we use to treat the silicon surface underneath the Josephson junctions (JJs) of fixed-frequency transmon qubits made with aluminum base metallization. Using several materials analysis techniques, we demonstrate that these surface treatments can remove germanium residue introduced by our JJ fabrication with no other changes to the overall process flow. These surface treatments result in significantly improved energy relaxation times for the highest performing process, with median T1=334 μs, corresponding to quality factor Q=6.6×106. This result suggests that the metal-substrate interface directly underneath the JJs was a major contributor to microwave loss in these transmon qubit circuits prior to integration of these surface treatments. Furthermore, this work illustrates how materials analysis can be used in conjunction with quantum device performance metrics to improve performance in superconducting qubits.

Emergent Harmonics in Josephson Tunnel Junctions Due to Series Inductance

  1. Junghyun Kim,
  2. Max Hays,
  3. Ilan T. Rosen,
  4. Junyoung An,
  5. Helin Zhang,
  6. Aranya Goswami,
  7. Kate Azar,
  8. Jeffrey M. Gertler,
  9. Bethany M. Niedzielski,
  10. Mollie E. Schwartz,
  11. Terry P. Orlando,
  12. Jeffrey A. Grover,
  13. Kyle Serniak,
  14. and William D. Oliver
Josephson tunnel junctions are essential elements of superconducting quantum circuits. The operability of these circuits presumes a 2π-periodic sinusoidal potential of a tunnel junction,
but higher-order corrections to this Josephson potential, often referred to as „harmonics,“ cause deviations from the expected circuit behavior. Two potential sources for these harmonics are the intrinsic current-phase relationship of the Josephson junction and the inductance of the metallic traces connecting the junction to other circuit elements. Here, we introduce a method to distinguish the origin of the observed harmonics using nearly-symmetric superconducting quantum interference devices (SQUIDs). Spectroscopic measurements of level transitions in multiple devices reveal features that cannot be explained by a standard cosine potential, but are accurately reproduced when accounting for a second-harmonic contribution to the model. The observed scaling of the second harmonic with Josephson-junction size indicates that it is due almost entirely to the trace inductance. These results inform the design of next-generation superconducting circuits for quantum information processing and the investigation of the supercurrent diode effect.

Temperature and Magnetic-Field Dependence of Energy Relaxation in a Fluxonium Qubit

  1. Lamia Ateshian,
  2. Max Hays,
  3. David A. Rower,
  4. Helin Zhang,
  5. Kate Azar,
  6. Réouven Assouly,
  7. Leon Ding,
  8. Michael Gingras,
  9. Hannah Stickler,
  10. Bethany M. Niedzielski,
  11. Mollie E. Schwartz,
  12. Terry P. Orlando,
  13. Joel I.J. Wang,
  14. Simon Gustavsson,
  15. Jeffrey A. Grover,
  16. Kyle Serniak,
  17. and William D. Oliver
Noise from material defects at device interfaces is known to limit the coherence of superconducting circuits, yet our understanding of the defect origins and noise mechanisms remains
incomplete. Here we investigate the temperature and in-plane magnetic-field dependence of energy relaxation in a low-frequency fluxonium qubit, where the sensitivity to flux noise and charge noise arising from dielectric loss can be tuned by applied flux. We observe an approximately linear scaling of flux noise with temperature T and a power-law dependence of dielectric loss T3 up to 100 mK. Additionally, we find that the dielectric-loss-limited T1 decreases with weak in-plane magnetic fields, suggesting a potential magnetic-field response of the underlying charge-coupled defects. We implement a multi-level decoherence model in our analysis, motivated by the widely tunable matrix elements and transition energies approaching the thermal energy scale in our system. These findings offer insight for fluxonium coherence modeling and should inform microscopic theories of intrinsic noise in superconducting circuits.

Theory of Quasiparticle Generation by Microwave Drives in Superconducting Qubits

  1. Shoumik Chowdhury,
  2. Max Hays,
  3. Shantanu R. Jha,
  4. Kyle Serniak,
  5. Terry P. Orlando,
  6. Jeffrey A. Grover,
  7. and William D. Oliver
Microwave drives are commonly employed to control superconducting quantum circuits, enabling qubit gates, readout, and parametric interactions. As the drive frequencies are typically
an order of magnitude smaller than (twice) the superconducting gap, it is generally assumed that such drives do not disturb the BCS ground state. However, sufficiently strong drives can activate multi-photon pair-breaking processes that generate quasiparticles and result in qubit errors. In this work, we present a theoretical framework for calculating the rates of multi-photon-assisted pair-breaking transitions induced by both charge- and flux-coupled microwave drives. Through illustrative examples, we show that drive-induced QP generation may impact novel high-frequency dispersive readout architectures, as well as Floquet-engineered superconducting circuits operating under strong driving conditions.

High-Efficiency, Low-Loss Floquet-mode Traveling Wave Parametric Amplifier Characterization and Measurement

  1. Jennifer Wang,
  2. Kaidong Peng,
  3. Gregory D Cunningham,
  4. Andres Lombo,
  5. Alec Yen,
  6. Daniela Zaidenberg,
  7. William D. Oliver,
  8. and Kevin P. O'Brien
Advancing error-corrected quantum computing and fundamental science necessitates quantum-limited amplifiers with near-ideal quantum efficiency and multiplexing capability. However,existing solutions achieve one at the expense of the other. In this work, we experimentally demonstrate the first Floquet-mode traveling-wave parametric amplifier (Floquet TWPA). Fabricated in a superconducting-qubit process, our Floquet TWPA achieves minimal dissipation, quantum-limited noise performance, and broadband operation. Our device exhibits >20-dB amplification over a 3-GHz instantaneous bandwidth, <0.5-dB average in-band insertion loss, and the highest-reported intrinsic quantum efficiency for a TWPA of 92.1±7.6%, relative to an ideal phase-preserving amplifier. When measuring a superconducting qubit, our Floquet TWPA enables a system measurement efficiency of 65.1±5.8%, the highest-reported in a superconducting qubit readout experiment utilizing phase-preserving amplifiers to the best of our knowledge. These general-purpose Floquet TWPAs are suitable for fast, high-fidelity multiplexed readout in large-scale quantum systems and future monolithic integration with quantum processors.[/expand]

Non-degenerate noise-resilient superconducting qubit

  1. Max Hays,
  2. Junghyun Kim,
  3. and William D. Oliver
We propose a superconducting qubit based on engineering the first and second harmonics of the Josephson energy and phase relation EJ1cosφ and EJ2cos2φ. By constructing a circuit such
that EJ2 is negative and |EJ1|≪|EJ2|, we create a periodic potential with two non-degenerate minima. The qubit, which we dub „harmonium“, is formed from the lowest-energy states of each minimum. Bit-flip protection of the qubit arises due to the localization of each qubit state to their respective minima, while phase-flip protection can be understood by considering the circuit within the Born-Oppenheimer approximation. We demonstrate with time-domain simulations that single- and two-qubit gates can be performed in approximately one hundred nanoseconds. Finally, we compute the qubit coherence times using numerical diagonalization of the complete circuit in conjunction with state-of-the-art noise models. We estimate out-of-manifold heating times on the order of milliseconds, which can be treated as erasure errors using conventional dispersive readout. We estimate pure-dephasing times on the order of many tens of milliseconds, and bit-flip times on the order of seconds.

Efficient Qubit Calibration by Binary-Search Hamiltonian Tracking

  1. Fabrizio Berritta,
  2. Jacob Benestad,
  3. Lukas Pahl,
  4. Melvin Mathews,
  5. Jan A. Krzywda,
  6. Réouven Assouly,
  7. Youngkyu Sung,
  8. David K. Kim,
  9. Bethany M. Niedzielski,
  10. Kyle Serniak,
  11. Mollie E. Schwartz,
  12. Jonilyn L. Yoder,
  13. Anasua Chatterjee,
  14. Jeffrey A. Grover,
  15. Jeroen Danon,
  16. William D. Oliver,
  17. and Ferdinand Kuemmeth
We present a real-time method for calibrating the frequency of a resonantly driven qubit. The real-time processing capabilities of a controller dynamically compute adaptive probing
sequences for qubit-frequency estimation. Each probing time and drive frequency are calculated to divide the prior probability distribution into two branches, following a locally optimal strategy that mimics a conventional binary search. We show the algorithm’s efficacy by stabilizing a flux-tunable transmon qubit, leading to improved coherence and gate fidelity. By feeding forward the updated qubit frequency, the FPGA-powered control electronics also mitigates non-Markovian noise in the system, which is detrimental to quantum error correction. Our protocol highlights the importance of feedback in improving the calibration and stability of qubits subject to drift and can be readily applied to other qubit platforms.

Flat-band (de)localization emulated with a superconducting qubit array

  1. Ilan T. Rosen,
  2. Sarah Muschinske,
  3. Cora N. Barrett,
  4. David A. Rower,
  5. Rabindra Das,
  6. David K. Kim,
  7. Bethany M. Niedzielski,
  8. Meghan Schuldt,
  9. Kyle Serniak,
  10. Mollie E. Schwartz,
  11. Jonilyn L. Yoder,
  12. Jeffrey A. Grover,
  13. and William D. Oliver
Arrays of coupled superconducting qubits are analog quantum simulators able to emulate a wide range of tight-binding models in parameter regimes that are difficult to access or adjust
in natural materials. In this work, we use a superconducting qubit array to emulate a tight-binding model on the rhombic lattice, which features flat bands. Enabled by broad adjustability of the dispersion of the energy bands and of on-site disorder, we examine regimes where flat-band localization and Anderson localization compete. We observe disorder-induced localization for dispersive bands and disorder-induced delocalization for flat bands. Remarkably, we find a sudden transition between the two regimes and, in its vicinity, the semblance of quantum critical scaling.

Remote Entangling Gates for Spin Qubits in Quantum Dots using an Offset-Charge-Sensitive Transmon Coupler

  1. Harry Hanlim Kang,
  2. Ilan T. Rosen,
  3. Max Hays,
  4. Jeffrey A. Grover,
  5. and William D. Oliver
We propose a method to realize microwave-activated CZ gates between two remote spin qubits in quantum dots using an offset-charge-sensitive transmon coupler. The qubits are longitudinally
coupled to the coupler, so that the transition frequency of the coupler depends on the logical qubit states; a capacitive network model using first-quantized charge operators is developed to illustrate this. Driving the coupler transition then implements a conditional phase shift on the qubits. Two pulsing schemes are investigated: a rapid, off-resonant pulse with constant amplitude, and a pulse with envelope engineering that incorporates dynamical decoupling to mitigate charge noise. We develop non-Markovian time-domain simulations to accurately model gate performance in the presence of 1/fβ charge noise. Simulation results indicate that a CZ gate fidelity exceeding 90% is possible with realistic parameters and noise models.