We propose a novel quantum transduction hybrid system based on the coupling of long-coherence time superconducting cavities with electro-optic resonators to achieve high-efficiencyand high-fidelity in quantum communication protocols and quantum sensing.
Due to their unique properties as lossless, nonlinear circuit elements, Josephson junctions lie at the heart of superconducting quantum information processing. Previously, we demonstrateda two-layer, submicrometer-scale overlap junction fabrication process suitable for qubits with long coherence times. Here, we extend the overlap junction fabrication process to micrometer-scale junctions. This allows us to fabricate other superconducting quantum devices. For example, we demonstrate an overlap-junction-based Josephson parametric amplifier that uses only 2 layers. This efficient fabrication process yields frequency-tunable devices with negligible insertion loss and a gain of ~ 30 dB. Compared to other processes, the overlap junction allows for fabrication with minimal infrastructure, high yield, and state-of-the-art device performance.