Implementation of Conditional-Phase Gates based on tunable ZZ-Interactions

  1. Michele C. Collodo,
  2. Johannes Herrmann,
  3. Nathan Lacroix,
  4. Christian Kraglund Andersen,
  5. Ants Remm,
  6. Stefania Lazar,
  7. Jean-Claude Besse,
  8. Theo Walter,
  9. Andreas Wallraff,
  10. and Christopher Eichler
High fidelity two-qubit gates exhibiting low crosstalk are essential building blocks for gate-based quantum information processing. In superconducting circuits two-qubit gates are typically

Realizing a Deterministic Source of Multipartite-Entangled Photonic Qubits

  1. Jean-Claude Besse,
  2. Kevin Reuer,
  3. Michele C. Collodo,
  4. Arne Wulff,
  5. Lucien Wernli,
  6. Adrian Copetudo,
  7. Daniel Malz,
  8. Paul Magnard,
  9. Abdulkadir Akin,
  10. Mihai Gabureac,
  11. Graham J. Norris,
  12. J. Ignacio Cirac,
  13. Andreas Wallraff,
  14. and Christopher Eichler
Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled

Parity Detection of Propagating Microwave Fields

  1. Jean-Claude Besse,
  2. Simone Gasparinetti,
  3. Michele C. Collodo,
  4. Theo Walter,
  5. Ants Remm,
  6. Jonas Krause,
  7. Christopher Eichler,
  8. and Andreas Wallraff
The parity of the number of elementary excitations present in a quantum system provides important insights into its physical properties. Parity measurements are used, for example, to

Single-Shot Quantum Non-Demolition Detection of Itinerant Microwave Photons

  1. Jean-Claude Besse,
  2. Simone Gasparinetti,
  3. Michele C. Collodo,
  4. Theo Walter,
  5. Philipp Kurpiers,
  6. Marek Pechal,
  7. Christopher Eichler,
  8. and Andreas Wallraff
Single-photon detection is an essential component in many experiments in quantum optics, but remains challenging in the microwave domain. We realize a quantum non-demolition detector

Studying Light-Harvesting Models with Superconducting Circuits

  1. Anton Potočnik,
  2. Arno Bargerbos,
  3. Florian A. Y. N. Schröder,
  4. Saeed A. Khan,
  5. Michele C. Collodo,
  6. Simone Gasparinetti,
  7. Yves Salathé,
  8. Celestino Creatore,
  9. Christopher Eichler,
  10. Hakan E. Türeci,
  11. Alex W. Chin,
  12. and Andreas Wallraff
The process of photosynthesis, the main source of energy in the animate world, converts sunlight into chemical energy. The surprisingly high efficiency of this process is believed to

Efficient single sideband microwave to optical conversion using an electro-optical whispering gallery mode resonator

  1. Alfredo Rueda,
  2. Florian Sedlmeir,
  3. Michele C. Collodo,
  4. Ulrich Vogl,
  5. Birgit Stiller,
  6. Gerhard Schunk,
  7. Dmitry V. Strekalov,
  8. Christoph Marquardt,
  9. Johannes M. Fink,
  10. Oskar Painter,
  11. Gerd Leuchs,
  12. and Harald G. L. Schwefel
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent