We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-offlithography, we observe qubit lifetimes and coherence times in the order of 10us. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
We report on the investigation of a superconducting anharmonic multi-level circuit that is coupled to a harmonic readout resonator. We observe multi-photon transitions via virtual energylevels of our system up to the fifth excited state. The back-action of these higher-order excitations on our readout device is analyzed quantitatively and demonstrated to be in accordance with theoretical expectation. By applying a strong microwave drive we achieve multi-photon dressing of our system which is dynamically coupled by a weak probe tone. The emerging higher-order Rabi sidebands and associated Autler-Townes splittings involving up to five levels of the investigated anharmonic circuit are observed. Experimental results are in good agreement with master equation simulations.
Short review on advanced superconducting circuits and devices.
We present a superconducting qubit design that is fabricated in a 2D geometry
over a superconducting ground plane to enhance the lifetime. The qubit is
coupled to a microstrip resonatorfor readout. The circuit is fabricated on a
silicon substrate using low loss, stoichiometric titanium nitride for capacitor
pads and small, shadow-evaporated aluminum/aluminum-oxide junctions. We observe
qubit relaxation and coherence times ($T_1$ and $T_2$) of 11.7 $pm$ 0.2 $mu$s
and 8.7 $pm$ 0.3 $mu$s, respectively. Calculations show that the proximity of
the superconducting plane suppresses the otherwise high radiation loss of the
qubit. A significant increase in $T_1$ is projected for a reduced
qubit-to-superconducting plane separation.