Quantum emulation of the transient dynamics in the multistate Landau-Zener model

  1. Alexander Stehli,
  2. Jan David Brehm,
  3. Tim Wolz,
  4. Andre Schneider,
  5. Hannes Rotzinger,
  6. Martin Weides,
  7. and Alexey V. Ustinov
Quantum simulation is one of the most promising near term applications of quantum computing. Especially, systems with a large Hilbert space are hard to solve for classical computers
and thus ideal targets for a simulation with quantum hardware. In this work, we study experimentally the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity. The underlying Hamiltonian is emulated by superconducting quantum circuit, where a tunable transmon qubit is coupled to a bosonic mode ensemble comprising four lumped element microwave resonators. We investigate the model for different initial states: Due to our circuit design, we are not limited to merely exciting the qubit, but can also pump the harmonic modes via a dedicated drive line. Here, the nature of the transient dynamics depends on the average photon number in the excited resonator. The greater effective coupling strength between qubit and higher Fock states results in a quasi-adiabatic transition, where coherent quantum oscillations are suppressed without the introduction of additional loss channels. Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.

Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit

  1. Maximilian Kristen,
  2. Andre Schneider,
  3. Alexander Stehli,
  4. Tim Wolz,
  5. Sergey Danilin,
  6. Hsiang S. Ku,
  7. David P. Pappas,
  8. Alexey V. Ustinov,
  9. and Martin Weides
Experiments with superconducting circuits require careful calibration of the applied pulses and fields over a large frequency range. This remains an ongoing challenge as commercial
semiconductor electronics are not able to probe signals arriving at the chip due to its cryogenic environment. Here, we demonstrate how the on-chip amplitude and frequency of a microwave field can be inferred from the ac Stark shifts of higher transmon levels. In our time-resolved measurements, we employ a simple quantum sensing protocol, i.e. Ramsey fringes, allowing us to detect the amplitude of the systems transfer function over a range of several hundreds of MHz with an energy sensitivity on the order of 10−4. Combined with similar measurements for the phase of the transfer function, our sensing method can facilitate the microwave calibration of high fidelity quantum gates necessary for working with superconducting quantum circuits. Additionally, the potential to characterize arbitrary microwave fields promotes applications in related areas of research, such as quantum optics or hybrid microwave systems including photonic, mechanical or magnonic subsystems.

Rabi oscillations in a superconducting nanowire circuit

  1. Yannick Schön,
  2. Jan Nicolas Voss,
  3. Micha Wildermuth,
  4. Andre Schneider,
  5. Sebastian T. Skacel,
  6. Martin P. Weides,
  7. Jared H. Cole,
  8. Hannes Rotzinger,
  9. and Alexey V. Ustinov
We investigate the circuit quantum electrodynamics of superconducting nanowire oscillators. The sample circuit consists of a capacitively shunted nanowire with a width of about 20 nm
and a varying length up to 350 nm, capacitively coupled to an on-chip resonator. By applying microwave pulses we observe Rabi oscillations, measure coherence times and the anharmonicity of the circuit. Despite the very compact design, simple top-down fabrication and high degree of disorder in the oxidized (granular) aluminum material used, we observe lifetimes in the microsecond range.

Transmon Qubit in a Magnetic Field: Evolution of Coherence and Transition Frequency

  1. Andre Schneider,
  2. Tim Wolz,
  3. Marco Pfirrmann,
  4. Martin Spiecker,
  5. Hannes Rotzinger,
  6. Alexey V. Ustinov,
  7. and Martin Weides
We report on spectroscopic and time-domain measurements on a fixed-frequency concentric transmon qubit in an applied in-plane magnetic field to explore its limits of magnetic field
compatibility. We demonstrate quantum coherence of the qubit up to field values of B=40mT, even without an optimized chip design or material combination of the qubit. The dephasing rate Γφ is shown to be not affected by the magnetic field in a broad range of the qubit transition frequency. For the evolution of the qubit transition frequency, we find the unintended second junction created in the shadow angle evaporation process to be non-negligible and deduce an analytic formula for the field-dependent qubit energies. We discuss the relevant field-dependent loss channels, which can not be distinguished by our measurements, inviting further theoretical and experimental investigation. Using well-known and well-studied standard components of the superconducting quantum architecture, we are able to reach a field regime relevant for quantum sensing and hybrid applications of magnetic spins and spin systems.

Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators

  1. Steffen Schlör,
  2. Jürgen Lisenfeld,
  3. Clemens Müller,
  4. Andre Schneider,
  5. David P. Pappas,
  6. Alexey V. Ustinov,
  7. and Martin Weides
We report on long-term measurements of a highly coherent, non-tunable transmon qubit, revealing low-frequency burst noise in coherence times and transition frequency. We achieve this
through a simultaneous measurement of the qubits relaxation and dephasing rate as well as its resonance frequency and an analysis of their correlations. These yield information about the microscopic origin of the intrinsic decoherence mechanisms in Josephson qubits. Our data is consistent with a small number of microscopic two-level systems located at the edges of the superconducting film, which is further confirmed by a spectral noise analysis.

Local Sensing with an AC Stark Spectrum Analyzer

  1. Andre Schneider,
  2. Jochen Braumüller,
  3. Lingzhen Guo,
  4. Patrizia Stehle,
  5. Hannes Rotzinger,
  6. Michael Marthaler,
  7. Alexey V. Ustinov,
  8. and Martin Weides
Analyzing weak microwave signals in the GHz regime is a challenging task if the signal level is very low and the photon energy widely undefined. Due to its discrete level structure,
a superconducting qubit is only sensitive to photons of certain energies. With a multi-level quantum system (qudit) in contrast, the unknown photon frequency can be deduced from the higher level AC Stark shift. The measurement accuracy is given by the signal amplitude, its detuning from the discrete qudit energy level structure and the anharmonicity. We demonstrate an energy sensitivity in the order of 10−4 with a measurement range of 1 GHz. Here, using a transmon qubit, we experimentally observe shifts in the transition frequencies involving up to three excited levels. These shifts are in good agreement with an analytic circuit model and master equation simulations. For large detunings, we find the shifts to scale linearly with the power of the applied microwave drive.

Analog quantum simulation of the Rabi model in the ultra-strong coupling regime

  1. Jochen Braumüller,
  2. Michael Marthaler,
  3. Andre Schneider,
  4. Alexander Stehli,
  5. Hannes Rotzinger,
  6. Martin Weides,
  7. and Alexey V. Ustinov
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal
interaction. In the weak coupling regime, a rotating wave approximation can be applied and the quantum Rabi Hamiltonian reduces to the well-known Jaynes-Cummings Hamiltonian. In the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, the counter rotating terms can no longer be neglected, revealing remarkable features in the system dynamics. Here, we demonstrate an analog quantum simulation of the quantum Rabi model in the ultra-strong coupling regime of variable strength. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. The simulation scheme is based on the application of two transversal microwave drive tones used to engineer the desired effective Hamiltonian. We observe a fast quantum state collapse followed by periodically recurring quantum revivals of the initial qubit state, which is the most distinct signature of the synthesized model. We achieve a relative coupling ratio of g/ω∼0.7, approaching the deep strong coupling regime.

Concentric transmon qubit featuring fast tunability and site-selective Z coupling

  1. Jochen Braumüller,
  2. Martin Sandberg,
  3. Michael R. Vissers,
  4. Andre Schneider,
  5. Steffen Schlör,
  6. Lukas Grünhaupt,
  7. Hannes Rotzinger,
  8. Michael Marthaler,
  9. Alexander Lukashenko,
  10. Amadeus Dieter,
  11. Alexey V. Ustinov,
  12. Martin Weides,
  13. and David P. Pappas
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off
lithography, we observe qubit lifetimes and coherence times in the order of 10us. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.