A Linear Quantum Coupler for Clean Bosonic Control

  1. Aniket Maiti,
  2. John W.O. Garmon,
  3. Yao Lu,
  4. Alessandro Miano,
  5. Luigi Frunzio,
  6. and Robert J. Schoelkopf
Quantum computing with superconducting circuits relies on high-fidelity driven nonlinear processes. An ideal quantum nonlinearity would selectively activate desired coherent processes

High-frequency readout free from transmon multi-excitation resonances

  1. Pavel D. Kurilovich,
  2. Thomas Connolly,
  3. Charlotte G. L. Bøttcher,
  4. Daniel K. Weiss,
  5. Sumeru Hazra,
  6. Vidul R. Joshi,
  7. Andy Z. Ding,
  8. Heekun Nho,
  9. Spencer Diamond,
  10. Vladislav D. Kurilovich,
  11. Wei Dai,
  12. Valla Fatemi,
  13. Luigi Frunzio,
  14. Leonid I. Glazman,
  15. and Michel H. Devoret
Quantum computation will rely on quantum error correction to counteract decoherence. Successfully implementing an error correction protocol requires the fidelity of qubit operations

Low loss lumped-element inductors made from granular aluminum

  1. Vishakha Gupta,
  2. Patrick Winkel,
  3. Neel Thakur,
  4. Peter van Vlaanderen,
  5. Yanhao Wang,
  6. Suhas Ganjam,
  7. Luigi Frunzio,
  8. and Robert J. Schoelkopf
Lumped-element inductors are an integral component in the circuit QED toolbox. However, it is challenging to build inductors that are simultaneously compact, linear and low-loss with

Quantum Error Correction of Qudits Beyond Break-even

  1. Benjamin L. Brock,
  2. Shraddha Singh,
  3. Alec Eickbusch,
  4. Volodymyr V. Sivak,
  5. Andy Z. Ding,
  6. Luigi Frunzio,
  7. Steven M. Girvin,
  8. and Michel H. Devoret
Hilbert space dimension is a key resource for quantum information processing. A large Hilbert space is not only an essential requirement for quantum error correction, but it can also

Quantum Control of an Oscillator with a Kerr-cat Qubit

  1. Andy Z. Ding,
  2. Benjamin L. Brock,
  3. Alec Eickbusch,
  4. Akshay Koottandavida,
  5. Nicholas E. Frattini,
  6. Rodrigo G. Cortinas,
  7. Vidul R. Joshi,
  8. Stijn J. de Graaf,
  9. Benjamin J. Chapman,
  10. Suhas Ganjam,
  11. Luigi Frunzio,
  12. Robert J. Schoelkopf,
  13. and Michel H. Devoret
Bosonic codes offer a hardware-efficient strategy for quantum error correction by redundantly encoding quantum information in the large Hilbert space of a harmonic oscillator. However,

A mid-circuit erasure check on a dual-rail cavity qubit using the joint-photon number-splitting regime of circuit QED

  1. Stijn J. de Graaf,
  2. Sophia H. Xue,
  3. Benjamin J. Chapman,
  4. James D. Teoh,
  5. Takahiro Tsunoda,
  6. Patrick Winkel,
  7. John W.O. Garmon,
  8. Kathleen M. Chang,
  9. Luigi Frunzio,
  10. Shruti Puri,
  11. and Robert J. Schoelkopf
Quantum control of a linear oscillator using a static dispersive coupling to a nonlinear ancilla underpins a wide variety of experiments in circuit QED. Extending this control to more

Demonstrating a superconducting dual-rail cavity qubit with erasure-detected logical measurements

  1. Kevin S. Chou,
  2. Tali Shemma,
  3. Heather McCarrick,
  4. Tzu-Chiao Chien,
  5. James D. Teoh,
  6. Patrick Winkel,
  7. Amos Anderson,
  8. Jonathan Chen,
  9. Jacob Curtis,
  10. Stijn J. de Graaf,
  11. John W.O. Garmon,
  12. Benjamin Gudlewski,
  13. William D. Kalfus,
  14. Trevor Keen,
  15. Nishaad Khedkar,
  16. Chan U Lei,
  17. Gangqiang Liu,
  18. Pinlei Lu,
  19. Yao Lu,
  20. Aniket Maiti,
  21. Luke Mastalli-Kelly,
  22. Nitish Mehta,
  23. Shantanu O. Mundhada,
  24. Anirudh Narla,
  25. Taewan Noh,
  26. Takahiro Tsunoda,
  27. Sophia H. Xue,
  28. Joseph O. Yuan,
  29. Luigi Frunzio,
  30. Jose Aumentado,
  31. Shruti Puri,
  32. Steven M. Girvin,
  33. S. Harvey Moseley Jr.,
  34. and Robert J. Schoelkopf
A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is to

A high-fidelity microwave beamsplitter with a parity-protected converter

  1. Yao Lu,
  2. Aniket Maiti,
  3. John W.O. Garmon,
  4. Suhas Ganjam,
  5. Yaxing Zhang,
  6. Jahan Claes,
  7. Luigi Frunzio,
  8. S. M. Girvin,
  9. and Robert J. Schoelkopf
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approach

A high on-off ratio beamsplitter interaction for gates on bosonically encoded qubits

  1. Benjamin J. Chapman,
  2. Stijn J. de Graaf,
  3. Sophia H. Xue,
  4. Yaxing Zhang,
  5. James Teoh,
  6. Jacob C. Curtis,
  7. Takahiro Tsunoda,
  8. Alec Eickbusch,
  9. Alexander P. Read,
  10. Akshay Koottandavida,
  11. Shantanu O. Mundhada,
  12. Luigi Frunzio,
  13. M. H. Devoret,
  14. S. M. Girvin,
  15. and R. J. Schoelkopf
Encoding a qubit in a high quality superconducting microwave cavity offers the opportunity to perform the first layer of error correction in a single device, but presents a challenge:

Dual-rail encoding with superconducting cavities

  1. James D. Teoh,
  2. Patrick Winkel,
  3. Harshvardhan K. Babla,
  4. Benjamin J. Chapman,
  5. Jahan Claes,
  6. Stijn J. de Graaf,
  7. John W.O. Garmon,
  8. William D. Kalfus,
  9. Yao Lu,
  10. Aniket Maiti,
  11. Kaavya Sahay,
  12. Neel Thakur,
  13. Takahiro Tsunoda,
  14. Sophia H. Xue,
  15. Luigi Frunzio,
  16. Steven M. Girvin,
  17. Shruti Puri,
  18. and Robert J. Schoelkopf
The design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computations. To this end, we introduce