High-fidelity quantum non-demolition qubit measurement is critical to error correction and rapid qubit feedback in large-scale quantum computing. High-fidelity readout requires passinga short and strong pulse through the qubit’s readout resonator, which is then processed by a sufficiently high bandwidth, high saturation power, and quantum-limited amplifier. We have developed a design pipeline that combines time-domain simulation of the un-truncated device Hamiltonian, fabrication constraints, and maximization of saturation power. We have realized an amplifier based on a modified NIST tri-layer Nb fabrication suite which utilizes an array of 25 radio frequency Superconducting QUantum Interference Devices (rf SQUIDs) embedded within a low-Q resonator powered by a high-power voltage pump delivered via a diplexer on the signal port. We show that, despite the intensity of the pump, the device is quantum-efficient and capable of high-fidelity measurement limited by state transitions in the transmon. We present experimental data demonstrating up to -91.2 dBm input saturation power with 20 dB gain, up to 28 MHz instantaneous bandwidth, and phase-preserving qubit measurements with 62% quantum efficiency.
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hinderedby unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to the lowest error-time product reported in solid-state quantum information platforms to date.
An electro-optomechanical device capable of microwave-to-optics conversion has recently been demonstrated, with the vision of enabling optical networks of superconducting qubits. Herewe present an improved converter design that uses a three-dimensional (3D) microwave cavity for coupling between the microwave transmission line and an integrated LC resonator on the converter chip. The new design simplifies the optical assembly and decouples it from the microwave part of the setup. Experimental demonstrations show that the modular device assembly allows us to flexibly tune the microwave coupling to the converter chip while maintaining small loss. We also find that electromechanical experiments are not impacted by the additional microwave cavity. Our design is compatible with a high-finesse optical cavity and will improve optical performance.
We demonstrate a fully cryogenic microwave feedback network composed of
modular superconducting devices interconnected by transmission lines and
designed to control a mechanical oscillatorcoupled to one of the devices. The
network is partitioned into an electromechanical device and a dynamically
tunable controller that coherently receives, processes and feeds back
continuous microwave signals that modify the dynamics and readout of the
mechanical state. While previous electromechanical systems represent some
compromise between efficient control and efficient readout of the mechanical
state, as set by the electromagnetic decay rate, this flexible controller
yields a closed-loop network that can be dynamically and continuously tuned
between both extremes much faster than the mechanical response time. We
demonstrate that the microwave decay rate may be modulated by at least a factor
of 10 at a rate greater than $10^4$ times the mechanical response rate.
Routers, switches, and repeaters are essential components of modern
information-processing systems. Similar devices will be needed in future
superconducting quantum computers. In thiswork we investigate experimentally
the time evolution of Autler-Townes splitting in a superconducting phase qubit
under the application of a control tone resonantly coupled to the second
transition. A three-level model that includes independently determined
parameters for relaxation and dephasing gives excellent agreement with the
experiment. The results demonstrate that the qubit can be used as a ON/OFF
switch with 100 ns operating time-scale for the reflection/transmission of
photons coming from an applied probe microwave tone. The ON state is realized
when the control tone is sufficiently strong to generate an Autler-Townes
doublet, suppressing the absorption of the probe tone photons and resulting in
a maximum of transmission.