Dynamical Autler-Townes control of a phase qubit

  1. Jian Li,
  2. G. S. Paraoanu,
  3. Katarina Cicak,
  4. Fabio Altomare,
  5. Jae I. Park,
  6. Raymond W. Simmonds,
  7. Mika A. Sillanpaa,
  8. and Pertti J. Hakonen
Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.

leave comment