Correlating Superconducting Qubit Performance Losses to Sidewall Near-Field Scattering via Terahertz Nanophotonics

  1. Richard H. J. Kim,
  2. Samuel J. Haeuser,
  3. Joong-Mok Park,
  4. Randall K. Chan,
  5. Jin-Su Oh,
  6. Thomas Koschny,
  7. Lin Zhou,
  8. Matthew J. Kramer,
  9. Akshay A. Murthy,
  10. Mustafa Bal,
  11. Francesco Crisa,
  12. Sabrina Garattoni,
  13. Shaojiang Zhu,
  14. Andrei Lunin,
  15. David Olaya,
  16. Peter Hopkins,
  17. Alex Romanenko,
  18. Anna Grassellino,
  19. and Jigang Wang
Elucidating dielectric losses, structural heterogeneity, and interface imperfections is critical for improving coherence in superconducting qubits. However, most diagnostics rely on
destructive electron microscopy or low-throughput millikelvin quantum measurements. Here, we demonstrate noninvasive terahertz (THz) nano-imaging/-spectroscopy of encapsulated niobium transmon qubits, revealing sidewall near-field scattering that correlates with qubit coherence. We further employ a THz hyperspectral line scan to probe dielectric responses and field participation at Al junction interfaces. These findings highlight the promise of THz near-field methods as a high-throughput proxy characterization tool for guiding material selection and optimizing processing protocols to improve qubit and quantum circuit performance.

Identifying Materials-Level Sources of Performance Variation in Superconducting Transmon Qubits

  1. Akshay A. Murthy,
  2. Mustafa Bal,
  3. Michael J. Bedzyk,
  4. Hilal Cansizoglu,
  5. Randall K. Chan,
  6. Venkat Chandrasekhar,
  7. Francesco Crisa,
  8. Amlan Datta,
  9. Yanpei Deng,
  10. Celeo D. Matute Diaz,
  11. Vinayak P. Dravid,
  12. David A. Garcia-Wetten,
  13. Sabrina Garattoni,
  14. Sunil Ghimire,
  15. Dominic P. Goronzy,
  16. Sebastian de Graaf,
  17. Sam Haeuser,
  18. Mark C. Hersam,
  19. Dieter Isheim,
  20. Kamal Joshi,
  21. Richard Kim,
  22. Saagar Kolachina,
  23. Cameron J. Kopas,
  24. Matthew J. Kramer,
  25. Ella O. Lachman,
  26. Jaeyel Lee,
  27. Peter G. Lim,
  28. Andrei Lunin,
  29. William Mah,
  30. Jayss Marshall,
  31. Josh Y. Mutus,
  32. Jin-Su Oh,
  33. David Olaya,
  34. David P. Pappas,
  35. Joong-mok Park,
  36. Ruslan Prozorov,
  37. Roberto dos Reis,
  38. David N. Seidman,
  39. Zuhawn Sung,
  40. Makariy Tanatar,
  41. Mitchell J. Walker,
  42. Jigang Wang,
  43. Haotian Wu,
  44. Lin Zhou,
  45. Shaojiang Zhu,
  46. Anna Grassellino,
  47. and Alexander Romanenko
The Superconducting Materials and Systems (SQMS) Center, a DOE National Quantum Information Science Research Center, has conducted a comprehensive and coordinated study using superconducting
transmon qubit chips with known performance metrics to identify the underlying materials-level sources of device-to-device performance variation. Following qubit coherence measurements, these qubits of varying base superconducting metals and substrates have been examined with various nondestructive and invasive material characterization techniques at Northwestern University, Ames National Laboratory, and Fermilab as part of a blind study. We find trends in variations of the depth of the etched substrate trench, the thickness of the surface oxide, and the geometry of the sidewall, which when combined, lead to correlations with the T1 lifetime across different devices. In addition, we provide a list of features that varied from device to device, for which the impact on performance requires further studies. Finally, we identify two low-temperature characterization techniques that may potentially serve as proxy tools for qubit measurements. These insights provide materials-oriented solutions to not only reduce performance variations across neighboring devices, but also to engineer and fabricate devices with optimal geometries to achieve performance metrics beyond the state-of-the-art values.