I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
23
Jul
2024
A high-efficiency plug-and-play superconducting qubit network
Modular architectures are a promising approach to scale quantum devices to the point of fault tolerance and utility. Modularity is particularly appealing for superconducting qubits,
as monolithically manufactured devices are limited in both system size and quality. Constructing complex quantum systems as networks of interchangeable modules can overcome this challenge through `Lego-like‘ assembly, reconfiguration, and expansion, in a spirit similar to modern classical computers. First prototypical superconducting quantum device networks have been demonstrated. Interfaces that simultaneously permit interchangeability and high-fidelity operations remain a crucial challenge, however. Here, we demonstrate a high-efficiency interconnect based on a detachable cable between superconducting qubit devices. We overcome the inevitable loss in a detachable connection through a fast pump scheme, enabling inter-module SWAP efficiencies at the 99%-level in less than 100 ns. We use this scheme to generate high-fidelity entanglement and operate a distributed logical dual-rail qubit. At the observed ~1% error rate, operations through the interconnect are at the threshold for fault-tolerance. These results introduce a modular architecture for scaling quantum processors with reconfigurable and expandable networks.
Pure kinetic inductance coupling for cQED with flux qubits
We demonstrate a qubit-readout architecture where the dispersive coupling is entirely mediated by a kinetic inductance. This allows us to engineer the dispersive shift of the readout
resonator independent of the qubit and resonator capacitances. We validate the pure kinetic coupling concept and demonstrate various generalized flux qubit regimes from plasmon to fluxon, with dispersive shifts ranging from 60 kHz to 2 MHz at the half-flux quantum sweet spot. We achieve readout performances comparable to conventional architectures with quantum state preparation fidelities of 99.7 % and 92.7 % for the ground and excited states, respectively, and below 0.1 % leakage to non-computational states.
22
Jul
2024
24 days-stable CNOT-gate on fluxonium qubits with over 99.9% fidelity
Fluxonium qubit is a promising building block for quantum information processing due to its long coherence time and strong anharmonicity. In this paper, we realize a 60 ns direct CNOT-gate
on two inductively-coupled fluxonium qubits using selective darkening approach, resulting in a gate fidelity as high as 99.94%. The fidelity remains above 99.9% for 24 days without any recalibration between randomized benchmarking measurements. Compared with the 99.96% fidelity of a 60 ns identity gate, our data brings the investigation of the non-decoherence-related errors during gate operations down to 2×10−4. The present result adds a simple and robust two-qubit gate into the still relatively small family of „the beyond three nines“ demonstrations on superconducting qubits.
Verifying the analogy between transversely coupled spin-1/2 systems and inductively-coupled fluxoniums
We report a detailed characterization of two inductively coupled superconducting fluxonium qubits for implementing high-fidelity cross-resonance gates. Our circuit stands out because
it behaves very closely to the case of two transversely coupled spin-1/2 systems. In particular, the generally unwanted static ZZ-term due to the non-computational transitions is nearly absent despite a strong qubit-qubit hybridization. Spectroscopy of the non-computational transitions reveals a spurious LC-mode arising from the combination of the coupling inductance and the capacitive links between the terminals of the two qubit circuits. Such a mode has a minor effect on our specific device, but it must be carefully considered for optimizing future designs.
19
Jul
2024
Photon Generation in Double Superconducting Cavities: Quantum Circuits Implementation
In this work, we studied photon generation due to the Dynamical Casimir Effect (DCE) in a one dimensional (1+1) double superconducting cavity. The cavity consists of two perfectly conducting
mirrors and a dielectric membrane of infinitesimal depth that effectively couples two cavities. The total length of the double cavity L, the difference in length between the two cavities ΔL, and the electric susceptibility χ and conductivity v of the dielectric membrane are tunable parameters. All four parameters are treated as independent and are allowed to be tuned at the same time, even with different frequencies. We analyzed the cavity’s energy spectra under different conditions, finding a transition between two distinct regimes that is accurately described by kc=v/χ‾‾‾√. In particular, a lowest energy mode is forbidden in one of the regimes while it is allowed in the other. We compared analytical approximations obtained through the Multiple Scale Analysis method with exact numeric solutions, obtaining the typical results when χ is not being tuned. However, when the susceptibility χ is tuned, different behaviours (such as oscillations in the number of photons of a cavity prepared in a vacuum state) might arise if the frequencies and amplitudes of all parameters are adequate. These oscillations can be considered as adiabatic shortcuts where all generated photons are eventually destroyed. Finally, we present an equivalent quantum circuit that would allow to experimentally simulate the DCE under the studied conditions.
Probing instantaneous quantum circuit refrigeration in the quantum regime
Recent advancements in circuit quantum electrodynamics have enabled precise manipulation and detection of the single energy quantum in quantum systems. A quantum circuit refrigerator
(QCR) is capable of electrically cooling the excited population of quantum systems, such as superconducting resonators and qubits, through photon-assisted tunneling of quasi-particles within a superconductor-insulator-normal metal junction. In this study, we demonstrated instantaneous QCR in the quantum regime. We performed the time-resolved measurement of the QCR-induced cooling of photon number inside the superconducting resonator by harnessing a qubit as a photon detector. From the enhanced photon loss rate of the resonator estimated from the amount of the AC Stark shift, the QCR was shown to have a cooling power of approximately 300 aW. Furthermore, even below the single energy quantum, the QCR can reduce the number of photons inside the resonator with 100 ns pulse from thermal equilibrium. Numerical calculations based on the Lindblad master equation successfully reproduced these experimental results.
18
Jul
2024
Hardware-Efficient Stabilization of Entanglement via Engineered Dissipation in Superconducting Circuits
Generation and preservation of quantum entanglement are among the primary tasks in quantum information processing. State stabilization via quantum bath engineering offers a resource-efficient
approach to achieve this objective. However, current methods for engineering dissipative channels to stabilize target entangled states often require specialized hardware designs, complicating experimental realization and hindering their compatibility with scalable quantum computation architectures. In this work, we propose and experimentally demonstrate a stabilization protocol readily implementable in the mainstream integrated superconducting quantum circuits. The approach utilizes a Raman process involving a resonant (or nearly resonant) superconducting qubit array and their dedicated readout resonators to effectively emerge nonlocal dissipative channels. Leveraging individual controllability of the qubits and resonators, the protocol stabilizes two-qubit Bell states with a fidelity of 90.7%, marking the highest reported value in solid-state platforms to date. Furthermore, by extending this strategy to include three qubits, an entangled W state is achieved with a fidelity of 86.2%, which has not been experimentally investigated before. Notably, the protocol is of practical interest since it only utilizes existing hardware common to standard operations in the underlying superconducting circuits, thereby facilitating the exploration of many-body quantum entanglement with dissipative resources.
17
Jul
2024
Pulse-based variational quantum optimization and metalearning in superconducting circuits
Solving optimization problems using variational algorithms stands out as a crucial application for noisy intermediate-scale devices. Instead of constructing gate-based quantum computers,
our focus centers on designing variational quantum algorithms within the analog paradigm. This involves optimizing parameters that directly control pulses, driving quantum states towards target states without the necessity of compiling a quantum circuit. In this work, we introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework. We illustrate the framework by optimizing external fluxes on superconducting quantum interference devices, effectively driving the wave function of this specific quantum architecture to the ground state of an encoded problem Hamiltonian. Given that the performance of variational algorithms heavily relies on appropriate initial parameters, we introduce a global optimizer as a meta-learning technique to tackle a simple problem. The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
16
Jul
2024
A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing
For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables. Limited
by the heat load of cabling and the massive cost of electronics, such an architecture is not viable for millions of qubits required for fault-tolerant quantum computing. Monolithic integration of the control electronics and the qubits provides a promising solution, which, however, requires a coherent cryogenic microwave pulse generator that is compatible with superconducting quantum circuits. Here, we report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures. We showcase high-fidelity readout of superconducting qubits with the microwave pulse generator. The device demonstrated here has a small footprint, negligible heat load, great flexibility to operate, and is fully compatible with today’s superconducting quantum circuits, thus providing an enabling technology for large-scale superconducting quantum computers.
15
Jul
2024
Quantum Control of an Oscillator with a Kerr-cat Qubit
Bosonic codes offer a hardware-efficient strategy for quantum error correction by redundantly encoding quantum information in the large Hilbert space of a harmonic oscillator. However,
experimental realizations of these codes are often limited by ancilla errors propagating to the encoded logical qubit during syndrome measurements. The Kerr-cat qubit has been proposed as an ancilla for these codes due to its theoretically-exponential noise bias, which would enable fault-tolerant error syndrome measurements, but the coupling required to perform these syndrome measurements has not yet been demonstrated. In this work, we experimentally realize driven parametric coupling of a Kerr-cat qubit to a high-quality-factor microwave cavity and demonstrate a gate set enabling universal quantum control of the cavity. We measure the decoherence of the cavity in the presence of the Kerr-cat and discover excess dephasing due to heating of the Kerr-cat to excited states. By engineering frequency-selective dissipation to counteract this heating, we are able to eliminate this dephasing, thereby demonstrating a high on-off ratio of control. Our results pave the way toward using the Kerr-cat to fault-tolerantly measure error syndromes of bosonic codes.