I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
09
Mai
2025
Quantitative calibration of a TWPA applied to an optomechanical platform
In the last decade, the microwave quantum electronics toolbox has been enriched with quantum limited detection devices such as Traveling Wave Parametric Amplifiers (TWPAs). The extreme
sensitivity they provide is not only mandatory for some physics applications within quantum information processing, but is also the key element that will determine the detection limit of quantum sensing setups. In the framework of microwave optomechanical systems, an unprecedented range of small motions and forces is accessible, for which a specific quantitative calibration becomes necessary. We report on near quantum-limited measurements performed with an aluminum drumhead mechanical device within the temperature range 4 mK – 400 mK. The whole setup is carefully calibrated, especially taking into account the power-dependence of microwave absorption in the superconducting optomechanical cavity. This effect is commonly attributed to Two-Level-Systems (TLSs) present in the metal oxide. We demonstrate that a similar feature exists in the TWPA, and can be phenomenologically fit with adapted expressions. The power and temperature dependence is studied over the full parameter range, leading to an absolute definition of phonon population (i.e. Brownian motion amplitude), with an uncertainty +-20 %.
Non-degenerate pumping of superconducting resonator parametric amplifier with evidence of phase-sensitive amplification
Superconducting resonator parametric amplifiers are potentially important components for a wide variety of fundamental physics experiments and utilitarian applications. We propose and
realise an operation scheme that achieves amplification through the use of non-degenerate pumps, which addresses two key challenges in the design of parametric amplifiers: non-continuous gain across the band over which amplification is possible, and pump-tone removal. We have experimentally demonstrated the non-degenerate pumping scheme using a half-wave resonator amplifier based on NbN thin-film, and measured peak gain of 26 dB and 3-dB bandwidth of 0.5 MHz. The two non-degenerate pump tones were positioned ~10 bandwidths above and below the frequency at which peak gain occurs. We have found the non-degenerate pumping scheme to be more stable compared to the usual degenerate pumping scheme in terms of gain drift against time, by a factor of 4. This scheme also retains the usual flexibility of NbN resonator parametric amplifiers in terms of reliable amplification in a ~4 K environment, and is suitable for cross-harmonic amplification. The use of pump at different frequencies allows phase-sensitive amplification when the signal tone is degenerate with the idler tone. A gain of 23 dB and squeezing ratio of 6 dB have been measured.
08
Mai
2025
A Circuit-QED Lattice System with Flexible Connectivity and Gapped Flat Bands for Photon-Mediated Spin Models
Quantum spin models are ubiquitous in solid-state physics, but classical simulation of them remains extremely challenging. Experimental testbed systems with a variety of spin-spin interactions
and measurement channels are therefore needed. One promising potential route to such testbeds is provided by microwave-photon-mediated interactions between superconducting qubits, where native strong light-matter coupling enables significant interactions even for virtual-photon-mediated processes. In this approach, the spin-model connectivity is set by the photonic mode structure, rather than the spatial structure of the qubit. Lattices of coplanar-waveguide (CPW) resonators have been demonstrated to allow extremely flexible connectivities and can therefore host a huge variety of photon-mediated spin models. However, large-scale CPW lattices have never before been successfully combined with superconducting qubits. Here we present the first such device featuring a quasi-1D CPW lattice with a non-trivial band structure and multiple transmon qubits. We demonstrate that superconducting-qubit readout and diagnostic techniques can be generalized to this highly multimode environment and observe the effective qubit-qubit interaction mediated by the bands of the resonator lattice. This device completes the toolkit needed to realize CPW lattices with qubits in one or two Euclidean dimensions, or negatively-curved hyperbolic space, and paves the way to driven-dissipative spin models with a large variety of connectivities.
07
Mai
2025
3D-Integrated Superconducting qubits: CMOS-Compatible, Wafer-Scale Processing for Flip-Chip Architectures
In this article, we present a technology development of a superconducting qubit device 3D-integrated by flip-chip-bonding and processed following CMOS fabrication standards and contamination
rules on 200 mm wafers. We present the utilized proof-of-concept chip designs for qubit- and carrier chip, as well as the respective front-end and back-end fabrication techniques. In characterization of the newly developed microbump technology based on metallized KOH-etched Si-islands, we observe a superconducting transition of the used metal stacks and radio frequency (RF) signal transfer through the bump connection with negligible attenuation. In time-domain spectroscopy of the qubits we find high yield qubit excitation with energy relaxation times of up to 15 us.
Traveling-Wave Parametric Amplifier with Passive Reverse Isolation
Traveling-wave parametric amplifiers (TWPAs) have attracted much attention for their broadband amplification and near-quantum-limited noise performance. TWPAs are non-reciprocal by
nature providing gain for forward-propagating signals and transmission line losses for backward traveling waves. This intrinsic non-reciprocity is insufficient to protect sensitive quantum devices from back-action due to noise from warmer amplification stages in practical systems, and thus necessitates the need for bulky cryogenic isolators. We present a multi-stage Traveling-Wave Parametric Amplifier (mTWPA) that addresses this limitation by achieving passive in-band reverse isolation alongside near-quantum-limited noise performance. The multi-stage architecture consists of two, mode conversion stages and a reflectionless high-pass filter which provides the passive isolation. Experimental measurements of a prototype mTWPA demonstrated 20 dB of forward gain across a 1.6 GHz bandwidth and greater than 35 dB of reverse isolation. Noise measurements indicate performance at 1.7 times the quantum limit. This demonstrates that the increased complexity of a multi-stage TWPA design does not lead to significant added noise. The designed distribution of gain across the stages is engineered to minimize internal amplifier noise at the input, and we propose further optimization strategies in redistribution of the gain between the stages. This level of isolation effectively mitigates noise from warmer amplification stages, matching the performance of conventional isolators. The mTWPA approach offers a scalable path forward for more efficient and compact quantum circuit readout systems.
05
Mai
2025
Flux-Trapping Fluxonium Qubit
In pursuit of superconducting quantum computing, fluxonium qubits have recently garnered attention for their large anharmonicity and high coherence at the sweet spot. Towards the large-scale
integration of fluxonium qubits, a major obstacle is the need for precise external magnetic flux bias: To achieve high performance at its sweet spot, each qubit requires a DC bias line. However, such lines inductively coupled to the qubits bring in additional wiring overhead, crosstalk, heating, and decoherence, necessitating measures for mitigating the problems. In this work, we propose a flux-trapping fluxonium qubit, which, by leveraging fluxoid quantization, enables the optimal phase biasing without using external magnetic flux control at the operating temperature. We introduce the design and working principle, and demonstrate the phase biasing achieved through fluxoid quantization.
Lumped-element broadband SNAIL parametric amplifier with on-chip pump filter for multiplexed readout
We present a SNAIL-based parametric amplifier that integrates a lumped-element impedance matching network for increased bandwidth and an on-chip pump-port filter for efficient pump
delivery. The amplifier is fabricated using a single-layer optical lithography step, followed by a single-layer electron beam lithography step. We measure a flat 20 dB gain profile with less than 1 dB ripple across a bandwidth of up to 250 MHz on multiple devices, demonstrating robust performance against variations arising from fabrication and packaging. We characterize the amplifier’s linearity by analyzing gain compression and intermodulation distortion under simultaneous multi-tone excitation. We show that the intermodulation products remain suppressed by more than 23 dB relative to the signal tones, even at the 1 dB gain compression point. We further validate its utility by performing simultaneous high-fidelity readout of two transmon qubits, achieving state assignment fidelities of 99.51% and 98.55%. The combination of compact design, fabrication simplicity, and performance robustness makes this amplifier a practical device for quantum experiments with superconducting circuits.
Hyperinductance based on stacked Josephson junctions
Superinductances are superconducting circuit elements that combine a large inductance with a low parasitic capacitance to ground, resulting in a characteristic impedance exceeding the
resistance quantum RQ=h/(2e)2≃6.45kΩ. In recent years, these components have become key enablers for emerging quantum circuit architectures. However, achieving high characteristic impedance while maintaining scalability and fabrication robustness remains a major challenge. In this work, we present two fabrication techniques for realizing superinductances based on vertically stacked Josephson junctions. Using a multi-angle Manhattan (MAM) process and a zero-angle (ZA) evaporation technique — in which junction stacks are connected pairwise using airbridges — we fabricate one-dimensional chains of stacks that act as high-impedance superconducting transmission lines. Two-tone microwave spectroscopy reveals the expected n‾√ scaling of the impedance with the number of junctions per stack. The chain fabricated using the ZA process, with nine junctions per stack, achieves a characteristic impedance of ∼16kΩ, a total inductance of 5.9μH, and a maximum frequency-dependent impedance of 50kΩ at 1.4 GHz. Our results establish junction stacking as a scalable, robust, and flexible platform for next-generation quantum circuits requiring ultra-high impedance environments.
04
Mai
2025
Analysis of a 3D Integrated Superconducting Quantum Chip Structure
This work presents a combined analytical and simulation-based study of a 3D-integrated quantum chip architecture. We model a flip-chip-inspired structure by stacking two superconducting
qubits fabricated on separate high-resistivity silicon substrates through a dielectric interlayer. Utilizing \emph{rigorous} Ansys High-Frequency Structure Simulator (HFSS) simulations and analytical models from microwave engineering and quantum theory, we evaluate key quantum metrics such as eigenfrequencies, Q-factors, decoherence times, anharmonicity, cross-Kerr, participation ratios, and qubit coupling energy to describe the performance of the quantum device as a function of integration parameters. The integration parameters include the thickness and the quality of the dielectric interlayer. For detuned qubits, these metrics remain mostly invariant with respect to the substrate separation. However, introducing dielectric interlayer loss decreases the qubit quality factor, which consequentially degrades the relaxation time of the qubit. It is found that for the structure studied in this work, the stacked chip distance can be as small as 0.5mm. These findings support the viability of 3D quantum integration as a scalable alternative to planar architectures, while identifying key limitations in qubit coherence preservation due to lossy interlayer materials.
02
Mai
2025
Towards an experimental implementation of entanglement harvesting in superconducting circuits: effect of detector gap variation on entanglement harvesting
Motivated by the prospect of experimental implementations of entanglement harvesting in superconducting circuits, we propose a model of variable-gap particle detector that aims to bridge
some of the gaps between Unruh-DeWitt (UDW) models and realistic implementations. Using parameters tailored to potential experimental setups, we investigate entanglement harvesting in both spacelike-separated and causally connected scenarios. Our findings reveal that while variations in the energy gap reduce the ability to harvest entanglement for spacelike-separated detectors, detectors in causal contact can still become entangled through their interaction with the field. Notably, our analysis shows that (due to the derivative coupling nature of the model) even for causally connected detectors, the entanglement primarily originates from the field’s correlations. This demonstrates the potential for genuine entanglement harvesting in the lab and opens the door to near-future entanglement harvesting experiments in superconducting circuits.