Variational preparation of finite-temperature states on a quantum computer

  1. R. Sagastizabal,
  2. S. P. Premaratne,
  3. B. A. Klaver,
  4. M. A. Rol,
  5. V. Negîrneac,
  6. M. Moreira,
  7. X. Zou,
  8. S. Johri,
  9. N. Muthusubramanian,
  10. M. Beekman,
  11. C. Zachariadis,
  12. V.P. Ostroukh,
  13. N. Haider,
  14. A. Bruno,
  15. A. Y. Matsuura,
  16. and L. DiCarlo
The preparation of thermal equilibrium states is important for the simulation of condensed-matter and cosmology systems using a quantum computer. We present a method to prepare such
mixed states with unitary operators, and demonstrate this technique experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with numerical simulations of the noisy quantum processor with error parameters drawn from experiment.

Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor

  1. M. A. Rol,
  2. L. Ciorciaro,
  3. F. K. Malinowski,
  4. B. M. Tarasinski,
  5. R. E. Sagastizabal,
  6. C. C. Bultink,
  7. Y. Salathe,
  8. N. Haandbaek,
  9. J. Sedivy,
  10. and L. DiCarlo
We introduce Cryoscope, a method for sampling on-chip baseband pulses used to dynamically control qubit frequency in a quantum processor. We specifically use Cryoscope to measure the
step response of the dedicated flux control lines of two-junction transmon qubits in circuit QED processors with the temporal resolution of the room-temperature arbitrary waveform generator producing the control pulses. As a first application, we iteratively improve this step response using optimized real-time digital filters to counter the linear-dynamical distortion in the control line, as needed for high-fidelity, repeatable one- and two-qubit gates based on dynamical control of qubit frequency.

Protecting quantum entanglement from qubit errors and leakage via repetitive parity measurements

  1. C. C. Bultink,
  2. T. E. O'Brien,
  3. R. Vollmer,
  4. N. Muthusubramanian,
  5. M. W. Beekman,
  6. M. A. Rol,
  7. X. Fu,
  8. B. Tarasinski,
  9. V. Ostroukh,
  10. B. Varbanov,
  11. A. Bruno,
  12. and L. DiCarlo
Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits, and
performs parity measurements to identify errors without destroying the encoded information. However, traditional QEC cannot handle leakage from the qubit computational space. Leakage affects leading experimental platforms, based on trapped ions and superconducting circuits, which use effective qubits within many-level physical systems. We investigate how two-transmon entangled states evolve under repeated parity measurements, and demonstrate the use of hidden Markov models to detect leakage using only the record of parity measurement outcomes required for QEC. We show the stabilization of Bell states over up to 26 parity measurements by mitigating leakage using postselection, and correcting qubit errors using Pauli-frame transformations. Our leakage identification method is computationally efficient and thus compatible with real-time leakage tracking and correction in larger quantum processors.

Error Mitigation by Symmetry Verification on a Variational Quantum Eigensolver

  1. R. Sagastizabal,
  2. X. Bonet-Monroig,
  3. M. Singh,
  4. M. A. Rol,
  5. C. C. Bultink,
  6. X. Fu,
  7. C.H. Price,
  8. V.P. Ostroukh,
  9. N. Muthusubramanian,
  10. A. Bruno,
  11. M. Beekman,
  12. N. Haider,
  13. T. E. O'Brien,
  14. and L. DiCarlo
Variational quantum eigensolvers offer a small-scale testbed to demonstrate the performance of error mitigation techniques with low experimental overhead. We present successful error
mitigation by applying the recently proposed symmetry verification technique to the experimental estimation of the ground-state energy and ground state of the hydrogen molecule. A finely adjustable exchange interaction between two qubits in a circuit QED processor efficiently prepares variational ansatz states in the single-excitation subspace respecting the parity symmetry of the qubit-mapped Hamiltonian. Symmetry verification improves the energy and state estimates by mitigating the effects of qubit relaxation and residual qubit excitation, which violate the symmetry. A full-density-matrix simulation matching the experiment dissects the contribution of these mechanisms from other calibrated error sources. Enforcing positivity of the measured density matrix via scalable convex optimization correlates the energy and state estimate improvements when using symmetry verification, with interesting implications for determining system properties beyond the ground-state energy.

eQASM: An Executable Quantum Instruction Set Architecture

  1. X. Fu,
  2. L. Riesebos,
  3. M. A. Rol,
  4. J. van Straten,
  5. J. van Someren,
  6. N. Khammassi,
  7. I. Ashraf,
  8. R.F.L. Vermeulen,
  9. V. Newsum,
  10. K. K. L. Loh,
  11. J. C. de Sterke,
  12. W. J. Vlothuizen,
  13. R. N. Schouten,
  14. C. G. Almudever,
  15. L. DiCarlo,
  16. and K. Bertels
Bridging the gap between quantum software and hardware, recent research proposed a quantum control microarchitecture QuMA which implements the quantum microinstruction set QuMIS. However,
QuMIS does not offer feedback control, and is tightly bound to the hardware implementation. Also, as the number of qubits grows, QuMA cannot fetch and execute instructions fast enough to apply all operations on qubits on time. Known as the quantum operation issue rate problem, this limitation is aggravated by the low information density of QuMIS instructions. In this paper, we propose an executable quantum instruction set architecture (QISA), called eQASM, that can be translated from the quantum assembly language (QASM), supports feedback, and is executed on a quantum control microarchitecture. eQASM alleviates the quantum operation issue rate problem by efficient timing specification, single-operation-multiple-qubit execution, and a very-long-instruction-word architecture. The definition of eQASM focuses on the assembly level to be expressive. Quantum operations are configured at compile time instead of being defined at QISA design time. We instantiate eQASM into a 32-bit instruction set targeting a seven-qubit superconducting quantum processor. We validate our design by performing several experiments on a two-qubit quantum processor.

Evolution of Nanowire Transmons and Their Quantum Coherence in Magnetic Field

  1. F. Luthi,
  2. T. Stavenga,
  3. O. W. Enzing,
  4. A. Bruno,
  5. C. Dickel,
  6. N. K. Langford,
  7. M. A. Rol,
  8. T. S. Jespersen,
  9. J. Nygard,
  10. P. Krogstrup,
  11. and L. DiCarlo
We present an experimental study of nanowire transmons at zero and applied in-plane magnetic field. With Josephson non-linearities provided by the nanowires, our qubits operate at higher
magnetic fields than standard transmons. Nanowire transmons exhibit coherence up to 70 mT, where the induced superconducting gap in the nanowire closes. We demonstrate that on-chip charge noise coupling to the Josephson energy plays a dominant role in the qubit dephasing. This takes the form of strongly-coupled two-level systems switching on 100 ms timescales and a more weakly coupled background producing 1/f noise. Several observations, including the field dependence of qubit energy relaxation and dephasing, are not fully understood, inviting further experimental investigation and theory. Using nanowires with a thinner superconducting shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation.

An Experimental Microarchitecture for a Superconducting Quantum Processor

  1. X. Fu,
  2. M. A. Rol,
  3. C. C. Bultink,
  4. J. van Someren,
  5. N. Khammassi,
  6. I. Ashraf,
  7. R.F.L. Vermeulen,
  8. J. C. de Sterke,
  9. W. J. Vlothuizen,
  10. R. N. Schouten,
  11. C. G. Almudever,
  12. L. DiCarlo,
  13. and K. Bertels
Quantum computers promise to solve certain problems that are intractable for classical computers, such as factoring large numbers and simulating quantum systems. To date, research in
quantum computer engineering has focused primarily at opposite ends of the required system stack: devising high-level programming languages and compilers to describe and optimize quantum algorithms, and building reliable low-level quantum hardware. Relatively little attention has been given to using the compiler output to fully control the operations on experimental quantum processors. Bridging this gap, we propose and build a prototype of a flexible control microarchitecture supporting quantum-classical mixed code for a superconducting quantum processor. The microarchitecture is based on three core elements: (i) a codeword-based event control scheme, (ii) queue-based precise event timing control, and (iii) a flexible multilevel instruction decoding mechanism for control. We design a set of quantum microinstructions that allows flexible control of quantum operations with precise timing. We demonstrate the microarchitecture and microinstruction set by performing a standard gate-characterization experiment on a transmon qubit.

Restless Tuneup of High-Fidelity Qubit Gates

  1. M. A. Rol,
  2. C. C. Bultink,
  3. T. E. O'Brien,
  4. S.R. de Jong,
  5. L.S. Theis,
  6. X. Fu,
  7. F. Luthi,
  8. R.F.L. Vermeulen,
  9. J. C. de Sterke,
  10. A. Bruno,
  11. D. Deurloo,
  12. R. N. Schouten,
  13. F.K. Wilhelm,
  14. and L. DiCarlo
We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing
a cost function for Nelder-Mead optimization from real-time correlation of non-demolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional changes in gate error with nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

Active resonator reset in the nonlinear dispersive regime of circuit QED

  1. C. C. Bultink,
  2. M. A. Rol,
  3. T. E. O'Brien,
  4. X. Fu,
  5. B. C. S. Dikken,
  6. R. Vermeulen,
  7. J. C. de Sterke,
  8. A. Bruno,
  9. R. N. Schouten,
  10. and L. DiCarlo
We present two pulse schemes for actively depleting measurement photons from a readout resonator in the nonlinear dispersive regime of circuit QED. One method uses digital feedback
conditioned on the measurement outcome while the other is unconditional. In the absence of analytic forms and symmetries to exploit in this nonlinear regime, the depletion pulses are numerically optimized using the Powell method. We shorten the photon depletion time by more than six inverse resonator linewidths compared to passive depletion by waiting. We quantify the benefit by emulating an ancilla qubit performing repeated quantum parity checks in a repetition code. Fast depletion increases the mean number of cycles to a spurious error detection event from order 1 to 75 at a 1 microsecond cycle time.

Independent, extensible control of same-frequency superconducting qubits by selective broadcasting

  1. S. Asaad,
  2. C. Dickel,
  3. S. Poletto,
  4. A. Bruno,
  5. N. K. Langford,
  6. M. A. Rol,
  7. D. Deurloo,
  8. and L. DiCarlo
A critical ingredient for realizing large-scale quantum information processors will be the ability to make economical use of qubit control hardware. We demonstrate an extensible strategy
for reusing control hardware on same-frequency transmon qubits in a circuit QED chip with surface-code-compatible connectivity. A vector switch matrix enables selective broadcasting of input pulses to multiple transmons with individual tailoring of pulse quadratures for each, as required to minimize the effects of leakage on weakly anharmonic qubits. Using randomized benchmarking, we compare multiple broadcasting strategies that each pass the surface-code error threshold for single-qubit gates. In particular, we introduce a selective-broadcasting control strategy using five pulse primitives, which allows independent, simultaneous Clifford gates on arbitrary numbers of qubits.