Scalable 3D quantum memory

  1. Edwar Xie,
  2. Frank Deppe,
  3. Daniel Repp,
  4. Peter Eder,
  5. Michael Fischer,
  6. Jan Goetz,
  7. Stefan Pogorzalek,
  8. Kirill G. Fedorov,
  9. Achim Marx,
  10. and Rudolf Gross
Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well controlled environment for superconducting qubits. In order to realize at the same time fast
readout and long-lived quantum information storage, one can couple the qubit both to a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. The external coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a Z-fidelity of 82%. We also find that this enhancement is not limited by fundamental constraints.

Parity-engineered light-matter interaction

  1. Jan Goetz,
  2. Frank Deppe,
  3. Kirill G. Fedorov,
  4. Peter Eder,
  5. Michael Fischer,
  6. Stefan Pogorzalek,
  7. Edwar Xie,
  8. Achim Marx,
  9. and Rudolf Gross
The concept of parity describes the inversion symmetry of a system and is of fundamental relevance in the standard model, quantum information processing, and field theory. In quantum
electrodynamics, parity is conserved and selection rules (SRs) appear when matter is probed with electromagnetic radiation. However, typically large field gradients are required to engineer the parity of the light-matter interaction operator for natural atoms. In this work, we instead irradiate a specifically designed superconducting artificial atom with spatially shaped microwave fields to select the interaction parity in situ. In this way, we observe dipole and quadrupole SRs for single state transitions and induce transparency via longitudinal coupling. Furthermore, we engineer an artificial potassium-like atom with adjustable wave function parity originating from an artificial orbital momentum provided by a resonator. Our work advances light-matter interaction to a new level with promising application perspectives in simulations of chemical compounds, quantum state engineering, and relativistic physics.

Flux-driven Josephson parametric amplifiers: Hysteretic flux response and nondegenerate gain measurements

  1. Stefan Pogorzalek,
  2. Kirill G. Fedorov,
  3. Ling Zhong,
  4. Jan Goetz,
  5. Friedrich Wulschner,
  6. Michael Fischer,
  7. Peter Eder,
  8. Edwar Xie,
  9. Kunihiro Inomata,
  10. Tsuyoshi Yamamoto,
  11. Yasunobu Nakamura,
  12. Achim Marx,
  13. Frank Deppe,
  14. and Rudolf Gross
Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited
amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs, three of them exhibiting a hysteretic dependence of the resonant frequency versus the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices (dc-SQUID), which provide the JPA nonlinearity, for a finite screening parameter βL>0 and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.