Three-dimensional (3D) superconducting microwave cavities with large mode volumes typically have high quality factors (>106). This is due to a reduced sensitivity to surface dielectriclosses, which is the limiting source of dissipation in two-dimensional transmission line resonators. In recent years, 3D microwave cavities have been extensively used for coupling and interacting with superconducting quantum bits (qubits), providing a versatile platform for quantum information processing and hybrid quantum systems. A current issue that has arisen is that 3D superconducting cavities do not permit magnetic field control of qubits embedded in these cavities. In contrast, microwave cavities made of normal metals can be transparent to magnetic fields, but experience a much lower quality factor (∼104), which negates many of the advantages of the 3D architecture. In an attempt to create a device that bridges a gap between these two types of cavities, having magnetic field control and high quality factor, we have created a hybrid 3D cavity. This new cavity is primarily composed of aluminium but also contains a small copper insert. We measured the internal quality factor of the hybrid cavity to be 102000, which is an order of magnitude improvement over all previously tested copper cavities. An added benefit to that our hybrid cavity possesses is that it also provides an improved thermal link to the sample that superconducting cavities alone cannot provide. In order to demonstrate precise magnetic control within the cavity, we performed spectroscopy of three superconducting qubits placed in the cavity, where individual control of each qubit’s frequency was exerted with small wire coils attached to the cavity. A large improvement in quality factor and magnetic field control makes this 3D hybrid cavity an attractive new platform for circuit quantum electrodynamics experiments.
Quantum physics cannot be reconciled with the classical philosophy of noncontextual realism. Realism demands that system properties exist independently of whether they are measured,while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Using a superconducting qutrit with deterministic, binary-outcome readouts, we violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. Noncontextuality tests have been carried out in a range of different physical systems and dimensionalities, including neutrons, trapped ions and single photons, but no experiment addressing all three loopholes has been performed in the qutrit scenario where entanglement cannot play a role. Demonstrating state-dependent contextuality of a solid-state system is also an important conceptual ingredient for universal quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
The ability to determine whether a multi-level quantum system is in a certain state while preserving quantum coherence between all orthorgonal states is necessary to realize binary-outcomecompatible measurements which are, in turn, a prerequisite for testing the contextuality of quantum mechanics. In this paper, we use a three-level superconducting system (a qutrit) coupled to a microwave cavity to explore different regimes of quantum measurement. In particular, we engineer the dispersive shifts of the cavity frequency to be identical for the first and second excited states of the qutrit which allows us to realize a strong projective binary-outcome measurement onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits.
We experimentally study the behavior of a parametrically pumped nonlinear oscillator, which is based on a superconducting lambda /4 resonator, and is terminated by a flux-tunable SQUID.We extract parameters for two devices. In particular, we study the effect of the nonlinearities in the system and compare to theory. The Duffing nonlinearity, \alpha, is determined from the probe-power dependent frequency shift of the oscillator, and the nonlinearity, \beta, related to the parametric flux pumping, is determined from the pump amplitude for the onset of parametric oscillations. Both nonlinearities depend on the parameters of the device and can be tuned in-situ by the applied dc flux. We also suggest how to cancel the effect of \beta by adding a small dc flux and a pump tone at twice the pump frequency.