Bound states in microwave QED: Crossover from waveguide to cavity regime

  1. N. Pradeep Kumar,
  2. Andrès Rosario Hamann,
  3. Rohit Navarathna,
  4. Maximilian Zanner,
  5. Mikhail Pletyukhov,
  6. and Arkady Fedorov
Light-matter interaction at the single-quantum level is the heart of many regimes of high fundamental importance to modern quantum technologies. Strong interaction of a qubit with a
single photon of an electromagnetic field mode is described by the cavity/circuit electrodynamics (QED) regime which is one of the most advanced platforms for quantum computing. The opposite regime of the waveguide QED, where qubits interact with a continuum of modes in an infinite one-dimensional space, is also at the focus of recent research revealing novel quantum phenomena. Despite the demonstration of several key features of waveguide QED, the transition from an experimentally realizable finite-size system to the theoretically assumed infinite device size is neither rigorously justified nor fully understood. In this paper, we formulate a unifying theory which under a minimal set of standard approximations accounts for physical boundaries of a system in all parameter domains. Considering two qubits in a rectangular waveguide which naturally exhibits a low frequency cutoff we are able to account for infinite number of modes and obtain an accurate description of the waveguide transmission, a life-time of a qubit-photon bound state and the exchange interaction between two qubit-photon bounds states. For verification, we compare our theory to experimental data obtained for two superconducting qubits in a rectangular waveguide demonstrating how the infinite size limit of waveguide QED emerges in a finite-size system. Our theory can be straightforwardly extended to other waveguides such as the photonic crystal and coupled cavity arrays.

Realization of a binary-outcome projection measurement of a three-level superconducting quantum system

  1. Markus Jerger,
  2. Pascal Macha,
  3. Andrés Rosario Hamann,
  4. Yarema Reshitnyk,
  5. Kristinn Juliusson,
  6. and Arkady Fedorov
The ability to determine whether a multi-level quantum system is in a certain state while preserving quantum coherence between all orthorgonal states is necessary to realize binary-outcome
compatible measurements which are, in turn, a prerequisite for testing the contextuality of quantum mechanics. In this paper, we use a three-level superconducting system (a qutrit) coupled to a microwave cavity to explore different regimes of quantum measurement. In particular, we engineer the dispersive shifts of the cavity frequency to be identical for the first and second excited states of the qutrit which allows us to realize a strong projective binary-outcome measurement onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits.