Investigation of nonlinear effects in Josephson parametric oscillators used in circuit QED

  1. Philip Krantz,
  2. Yarema Reshitnyk,
  3. Waltraut Wustmann,
  4. Jonas Bylander,
  5. Simon Gustavsson,
  6. William D. Oliver,
  7. Timothy Duty,
  8. Vitaly Shumeiko,
  9. and Per Delsing
We experimentally study the behavior of a parametrically pumped nonlinear oscillator, which is based on a superconducting lambda /4 resonator, and is terminated by a flux-tunable SQUID.
We extract parameters for two devices. In particular, we study the effect of the nonlinearities in the system and compare to theory. The Duffing nonlinearity, \alpha, is determined from the probe-power dependent frequency shift of the oscillator, and the nonlinearity, \beta, related to the parametric flux pumping, is determined from the pump amplitude for the onset of parametric oscillations. Both nonlinearities depend on the parameters of the device and can be tuned in-situ by the applied dc flux. We also suggest how to cancel the effect of \beta by adding a small dc flux and a pump tone at twice the pump frequency.

Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions

  1. Simon Gustavsson,
  2. Olger Zwier,
  3. Jonas Bylander,
  4. Fei Yan,
  5. Fumiki Yoshihara,
  6. Yasunobu Nakamura,
  7. Terry P. Orlando,
  8. and William D. Oliver
We present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative $pi$ pulses,
we amplify the qubit evolution due to microwave pulse distortion, which causes the qubit state to rotate around an axis perpendicular to the intended rotation axis. Measuring these rotations as a function of pulse period allows us to reconstruct the shape of the microwave pulse arriving at the sample. Using the extracted response to predistort the input signal, we are able to improve the pulse shapes and to reach an average single-qubit gate fidelity higher than 99.8%.

Time-Reversal Symmetry and Universal Conductance Fluctuations in a Driven Two-Level System

  1. Simon Gustavsson,
  2. Jonas Bylander,
  3. and William D. Oliver
In the presence of time-reversal symmetry, quantum interference gives strong corrections to the electric conductivity of disordered systems. The self-interference of an electron wavefunction
traveling time-reversed paths leads to effects such as weak localization and universal conductance fluctuations. Here, we investigate the effects of broken time-reversal symmetry in a driven artificial two-level system. Using a superconducting flux qubit, we implement scattering events as multiple Landau-Zener transitions by driving the qubit periodically back and forth through an avoided crossing. Interference between different qubit trajectories give rise to a speckle pattern in the qubit transition rate, similar to the interference patterns created when coherent light is scattered off a disordered potential. Since the scattering events are imposed by the driving protocol, we can control the time-reversal symmetry of the system by making the drive waveform symmetric or asymmetric in time. We find that the fluctuations of the transition rate exhibit a sharp peak when the drive is time-symmetric, similar to universal conductance fluctuations in electronic transport through mesoscopic systems.

Dynamical decoupling and dephasing in interacting two-level systems

  1. Simon Gustavsson,
  2. Fei Yan,
  3. Jonas Bylander,
  4. Fumiki Yoshihara,
  5. Yasunobu Nakamura,
  6. Terry P. Orlando,
  7. and William D. Oliver
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic
two-level system. By rapidly changing the qubit’s transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing due to fluctuations in the transition frequencies, thereby improving the coherence time of the entangled state. The coupling coherence is further enhanced when applying multiple refocusing pulses, in agreement with our $1/f$ noise model. The results are applicable to any two-qubit system with transverse coupling, and they highlight the potential of decoupling techniques for improving two-qubit gate fidelities, an essential prerequisite for implementing fault-tolerant quantum computing.