Bosonic quantum error correction codes in superconducting quantum circuits

  1. W. Cai,
  2. Y. Ma,
  3. W. Wang,
  4. C.-L. Zou,
  5. and L. Sun
Quantum information is vulnerable to environmental noise and experimental imperfections, hindering the reliability of practical quantum information processors. Therefore, quantum error
correction (QEC) that can protect quantum information against noise is vital for universal and scalable quantum computation. Among many different experimental platforms, superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC. During the last few years, bosonic QEC is demonstrated to reach the break-even point, i.e. the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimental system. Beyond that, universal gate sets and fault-tolerant operations on the bosonic codes are also realized, pushing quantum information processing towards the QEC era. In this article, we review the recent progress of the bosonic codes, including the Gottesman-Kitaev-Preskill codes, cat codes, and binomial codes, and discuss the opportunities of bosonic codes in various quantum applications, ranging from fault-tolerant quantum computation to quantum metrology. We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms.

Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit

  1. W. Wang,
  2. B. Yadin,
  3. Y. Ma,
  4. J. Ma,
  5. Y. Xu,
  6. L. Hu,
  7. H. Wang,
  8. Y. P. Song,
  9. Mile Gu,
  10. and L. Sun
Deterministic quantum computation with one qubit (DQC1) is iconic in highlighting that exponential quantum speedup may be achieved with negligible entanglement. Its discovery catalyzed
heated study of general quantum resources, and various conjectures regarding their role in DQC1’s performance advantage. Coherence and discord are prominent candidates, respectively characterizing non-classicality within localized and correlated systems. Here we realize DQC1 within a superconducting system, engineered such that the dynamics of coherence and discord can be tracked throughout its execution. We experimentally confirm that DQC1 acts as a resource converter, consuming coherence to generate discord during its operation. Our results highlight superconducting circuits as a promising platform for both realizing DQC1 and related algorithms, and experimentally characterizing resource dynamics within quantum protocols.

A two-fold quantum delayed-choice experiment in a superconducting circuit

  1. K. Liu,
  2. Y. Xu,
  3. W. Wang,
  4. Shi-Biao Zheng,
  5. Tanay Roy,
  6. Suman Kundu,
  7. Madhavi Chand,
  8. A. Ranadive,
  9. R. Vijay,
  10. Y. P. Song,
  11. L. M. Duan,
  12. and L. Sun
We propose and experimentally demonstrate a two-fold quantum delayed-choice experiment where wave or particle nature of a superconducting interfering device can be post-selected twice
after the interferometer. The wave-particle complementarity is controlled by a quantum which-path detector (WPD) in a superposition of its on and off states implemented through a superconducting cavity. The WPD projected to its on state records which-path information, which manifests the particle nature and destroys the interference associated with wave nature of the system. In our experiment, we can recover the interference signal through a quantum eraser even if the WPD has selected out the particle nature in the first round of delayed-choice detection, showing that a quantum WPD adds further unprecedented controllability to test of wave-particle complementarity through the peculiar quantum delayed-choice measurements.