Quantum computation will rely on quantum error correction to counteract decoherence. Successfully implementing an error correction protocol requires the fidelity of qubit operationsto be well-above error correction thresholds. In superconducting quantum computers, measurement of the qubit state remains the lowest-fidelity operation. For the transmon, a prototypical superconducting qubit, measurement is carried out by scattering a microwave tone off the qubit. Conventionally, the frequency of this tone is of the same order as the transmon frequency. The measurement fidelity in this approach is limited by multi-excitation resonances in the transmon spectrum which are activated at high readout power. These resonances excite the qubit outside of the computational basis, violating the desired quantum non-demolition character of the measurement. Here, we find that strongly detuning the readout frequency from that of the transmon exponentially suppresses the strength of spurious multi-excitation resonances. By increasing the readout frequency up to twelve times the transmon frequency, we achieve a quantum non-demolition measurement fidelity of 99.93% with a residual probability of leakage to non-computational states of only 0.02%.
The density of quasiparticles typically observed in superconducting qubits exceeds the value expected in equilibrium by many orders of magnitude. Can this out-of-equilibrium quasiparticledensity still possess an energy distribution in equilibrium with the phonon bath? Here, we answer this question affirmatively by measuring the thermal activation of charge-parity switching in a transmon qubit with a difference in superconducting gap on the two sides of the Josephson junction. We then demonstrate how the gap asymmetry of the device can be exploited to manipulate its parity.
Single-charge tunneling is a decoherence mechanism affecting superconducting qubits, yet the origin of excess quasiparticle excitations (QPs) responsible for this tunneling in superconductingdevices is not fully understood. We measure the flux dependence of charge-parity (or simply, „parity“) switching in an offset-charge-sensitive transmon qubit to identify the contributions of photon-assisted parity switching and QP generation to the overall parity-switching rate. The parity-switching rate exhibits a qubit-state-dependent peak in the flux dependence, indicating a cold distribution of excess QPs which are predominantly trapped in the low-gap film of the device. Moreover, we find that the photon-assisted process contributes significantly to both parity switching and the generation of excess QPs by fitting to a model that self-consistently incorporates photon-assisted parity switching as well as inter-film QP dynamics.
We introduce Weyl Josephson circuits: small Josephson junction circuits that simulate Weyl band structures. We first formulate a general approach to design circuits that are analogousto Bloch Hamiltonians of a desired dimensionality and symmetry class. We then construct and analyze a six-junction device that produces a 3D Weyl Hamiltonian with broken inversion symmetry and in which topological phase transitions can be triggered \emph{in situ}. We argue that currently available superconducting circuit technology allows experiments that probe topological properties inaccessible in condensed matter systems.