Signatures of quantum phase transitions in the dynamic response of fluxonium qubit chains

  1. Hendrik Meier,
  2. R. T. Brierley,
  3. Angela Kou,
  4. S. M. Girvin,
  5. and Leonid I. Glazman
We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared inductors. Despite its simplicity, this system exhibits a rich phase diagram. A
critical applied magnetic flux separates a homogeneous ground state from a phase with a ground state exhibiting inhomogeneous persistent currents. Depending on the parameters of the array, the phase transition may be a conventional continuous one, or of a commensurate-incommensurate nature. Furthermore, quantum fluctuations affect the transition and possibly lead to the presence of gapless „floating phases“. The signatures of the soft modes accompanying the transitions appear as a characteristic frequency dependence of the dissipative part of admittance.

Theory of remote entanglement via quantum-limited phase-preserving amplification

  1. Matti Silveri,
  2. Evan Zalys-Geller,
  3. Michael Hatridge,
  4. Zaki Leghtas,
  5. Michel H. Devoret,
  6. and S. M. Girvin
We show that a quantum-limited phase-preserving amplifier can act as a which-path information eraser when followed by detection of both quadratures. This beam splitter with gain implements
a continuous joint measurement on the signal sources. As an application, we propose heralded remote entanglement generation between two qubits coupled dispersively to separate cavities. Dissimilar qubit-cavity pairs can be made indistinguishable by simple engineering of the cavity driving fields providing experimental flexibility and the prospect for scalability. Additionally, we find an analytic solution for the stochastic master equation, a quantum filter, yielding a thorough physical understanding of the nonlinear measurement process leading to an entangled state of the qubits.

Time-Reversal Symmetrization of Spontaneous Emission for High Fidelity Quantum State Transfer

  1. Srikanth J. Srinivasan,
  2. Neereja M. Sundaresan,
  3. Darius Sadri,
  4. Yanbing Liu,
  5. Jay M. Gambetta,
  6. Terri Yu,
  7. S. M. Girvin,
  8. and Andrew A. Houck
We demonstrate the ability to control the spontaneous emission from a superconducting qubit coupled to a cavity. The time domain profile of the emitted photon is shaped into a symmetric
truncated exponential. The experiment is enabled by a qubit coupled to a cavity, with a coupling strength that can be tuned in tens of nanoseconds while maintaining a constant dressed state emission frequency. Symmetrization of the photonic wave packet will enable use of photons as flying qubits for transfering the quantum state between atoms in distant cavities.

Stabilizing entanglement autonomously between two superconducting qubits

  1. S. Shankar,
  2. M. Hatridge,
  3. Z. Leghtas,
  4. K. M. Sliwa,
  5. A. Narla,
  6. U. Vool,
  7. S. M. Girvin,
  8. L. Frunzio,
  9. M. Mirrahimi,
  10. and M. H. Devoret
Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for
the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have recently been used for qubit reset and the stabilization of a single qubit state, as well as for creating and stabilizing states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach counter-intuitively uses engineered dissipation to fight decoherence, obviating the need for a complicated external feedback loop to correct errors, simplifying implementation. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block state for quantum information processing. Such autonomous schemes, broadly applicable to a variety of physical systems as demonstrated by a concurrent publication with trapped ion qubits, will be an essential tool for the implementation of quantum-error correction.

Stabilizing a Bell state of two superconducting qubits by dissipation engineering

  1. Z. Leghtas,
  2. U. Vool,
  3. S. Shankar,
  4. M. Hatridge,
  5. S.M. Girvin,
  6. M.H. Devoret,
  7. and M. Mirrahimi
We propose a dissipation engineering scheme that prepares and protects a maximally entangled state of a pair of superconducting qubits. This is done by off-resonantly coupling the two
qubits to a low-Q cavity mode playing the role of a dissipative reservoir. We engineer this coupling by applying six continuous-wave microwave drives with appropriate frequencies. The two qubits need not be identical. We show that our approach does not require any fine-tuning of the parameters and requires only that certain ratios between them be large. With currently achievable coherence times, simulations indicate that a Bell state can be maintained over arbitrary long times with fidelities above 94%. Such performance leads to a significant violation of Bell’s inequality (CHSH correlation larger than 2.6) for arbitrary long times.

Observation of quantum state collapse and revival due to the single-photon Kerr effect

  1. Gerhard Kirchmair,
  2. Brian Vlastakis,
  3. Zaki Leghtas,
  4. Simon E. Nigg,
  5. Hanhee Paik,
  6. Eran Ginossar,
  7. Mazyar Mirrahimi,
  8. Luigi Frunzio,
  9. S. M. Girvin,
  10. and R. J. Schoelkopf
Photons are ideal carriers for quantum information as they can have a long coherence time and can be transmitted over long distances. These properties are a consequence of their weak
interactions within a nearly linear medium. To create and manipulate nonclassical states of light, however, one requires a strong, nonlinear interaction at the single photon level. One approach to generate suitable interactions is to couple photons to atoms, as in the strong coupling regime of cavity QED systems. In these systems, however, one only indirectly controls the quantum state of the light by manipulating the atoms. A direct photon-photon interaction occurs in so-called Kerr media, which typically induce only weak nonlinearity at the cost of significant loss. So far, it has not been possible to reach the single-photon Kerr regime, where the interaction strength between individual photons exceeds the loss rate. Here, using a 3D circuit QED architecture, we engineer an artificial Kerr medium which enters this regime and allows the observation of new quantum effects. We realize a Gedankenexperiment proposed by Yurke and Stoler, in which the collapse and revival of a coherent state can be observed. This time evolution is a consequence of the quantization of the light field in the cavity and the nonlinear interaction between individual photons. During this evolution non-classical superpositions of coherent states, i.e. multi-component Schroedinger cat states, are formed. We visualize this evolution by measuring the Husimi Q-function and confirm the non-classical properties of these transient states by Wigner tomography. The single-photon Kerr effect could be employed in QND measurement of photons, single photon generation, autonomous quantum feedback schemes and quantum logic operations.

Nonlinear oscillators and high fidelity qubit state measurement in circuit quantum electrodynamics

  1. Eran Ginossar,
  2. Lev S. Bishop,
  3. and S. M. Girvin
In this book chapter we analyze the high excitation nonlinear response of the Jaynes-Cummings model in quantum optics when the qubit and cavity are strongly coupled. We focus on the
parameter ranges appropriate for transmon qubits in the circuit quantum electrodynamics architecture, where the system behaves essentially as a nonlinear quantum oscillator and we analyze the quantum and semi-classical dynamics. One of the central motivations is that under strong excitation tones, the nonlinear response can lead to qubit quantum state discrimination and we present initial results for the cases when the qubit and cavity are on resonance or far off-resonance (dispersive).

Decoherence of superconducting qubits caused by quasiparticle tunneling

  1. G. Catelani,
  2. Simon E. Nigg,
  3. S. M. Girvin,
  4. R. J. Schoelkopf,
  5. and L. I. Glazman
In superconducting qubits, the interaction of the qubit degree of freedom with quasiparticles defines a fundamental limitation for the qubit coherence. We develop a theory of the pure
dephasing rate Gamma_{phi} caused by quasiparticles tunneling through a Josephson junction and of the inhomogeneous broadening due to changes in the occupations of Andreev states in the junction. To estimate Gamma_{phi}, we derive a master equation for the qubit dynamics. The tunneling rate of free quasiparticles is enhanced by their large density of states at energies close to the superconducting gap. Nevertheless, we find that Gamma_{phi} is small compared to the rates determined by extrinsic factors in most of the current qubit designs (phase and flux qubits, transmon, fluxonium). The split transmon, in which a single junction is replaced by a SQUID loop, represents an exception that could make possible the measurement of Gamma_{phi}. Fluctuations of the qubit frequency leading to inhomogeneous broadening may be caused by the fluctuations in the occupation numbers of the Andreev states associated with a phase-biased Josephson junction. This mechanism may be revealed in qubits with small-area junctions, since the smallest relative change in frequency it causes is of the order of the inverse number of transmission channels in the junction.

Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED

  1. A. P. Sears,
  2. A. Petrenko,
  3. G. Catelani,
  4. L. Sun,
  5. Hanhee Paik,
  6. G. Kirchmair,
  7. L. Frunzio,
  8. L. I. Glazman,
  9. S. M. Girvin,
  10. and R. J. Schoelkopf
We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival
or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.

Cavity-assisted quantum bath engineering

  1. K. W. Murch,
  2. U. Vool,
  3. D. Zhou,
  4. S. J. Weber,
  5. S. M. Girvin,
  6. and I. Siddiqi
We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity,
we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases the state purity and effectively cools the dressed atom state to a low temperature.