Signatures of quantum phase transitions in the dynamic response of fluxonium qubit chains

  1. Hendrik Meier,
  2. R. T. Brierley,
  3. Angela Kou,
  4. S. M. Girvin,
  5. and Leonid I. Glazman
We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared inductors. Despite its simplicity, this system exhibits a rich phase diagram. A
critical applied magnetic flux separates a homogeneous ground state from a phase with a ground state exhibiting inhomogeneous persistent currents. Depending on the parameters of the array, the phase transition may be a conventional continuous one, or of a commensurate-incommensurate nature. Furthermore, quantum fluctuations affect the transition and possibly lead to the presence of gapless „floating phases“. The signatures of the soft modes accompanying the transitions appear as a characteristic frequency dependence of the dissipative part of admittance.