Stabilizing a Bell state of two superconducting qubits by dissipation engineering

  1. Z. Leghtas,
  2. U. Vool,
  3. S. Shankar,
  4. M. Hatridge,
  5. S.M. Girvin,
  6. M.H. Devoret,
  7. and M. Mirrahimi
We propose a dissipation engineering scheme that prepares and protects a maximally entangled state of a pair of superconducting qubits. This is done by off-resonantly coupling the two qubits to a low-Q cavity mode playing the role of a dissipative reservoir. We engineer this coupling by applying six continuous-wave microwave drives with appropriate frequencies. The two qubits need not be identical. We show that our approach does not require any fine-tuning of the parameters and requires only that certain ratios between them be large. With currently achievable coherence times, simulations indicate that a Bell state can be maintained over arbitrary long times with fidelities above 94%. Such performance leads to a significant violation of Bell’s inequality (CHSH correlation larger than 2.6) for arbitrary long times.

leave comment