Loading quantum information deterministically onto a quantum node is an important step towards a quantum network. Here, we demonstrate that coherent-state microwave photons, with anoptimal temporal waveform, can be efficiently loaded onto a single superconducting artificial atom in a semi-infinite one-dimensional (1D) transmission-line waveguide. Using a weak coherent state (average photon number N<<1 with an exponentially rising waveform, whose time constant matches the decoherence time of the artificial atom, we demonstrate a loading efficiency of above 94% from 1D semi-free space to the artificial atom. We also show that Fock-state microwave photons can be deterministically loaded with an efficiency of 98.5%. We further manipulate the phase of the coherent state exciting the atom, enabling coherent control of the loading process. Our results open up promising applications in realizing quantum networks based on waveguide quantum electrodynamics (QED).[/expand]
Virtual photons can mediate interaction between atoms, resulting in an energy shift known as a collective Lamb shift. Observing the collective Lamb shift is challenging, since it canbe obscured by radiative decay and direct atom-atom interactions. Here, we place two superconducting qubits in a transmission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and exceeding the transition linewidth. We also show that the qubits can interact via the transmission line even if one of them does not decay into it.
Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a veryreal impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a „mirror“, creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum.
The phenomenon of quantum fluctuations, consisting in virtual particles emerging from vacuum, is central to understanding important effects in nature – for instance, the Lambshift of atomic spectra and the anomalous magnetic moment of the electron. It was also suggested that a mirror undergoing relativistic motion could convert virtual into real photons. This phenomenon, denominated dynamical Casimir effect (DCE), has been observed in recent experiments with superconducting circuits. Here, we show that the physics underlying the DCE may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.
In this work we theoretically analyze a circuit QED design where propagating
quantum microwaves interact with a single artificial atom, a single Cooper pair
box. In particular, we derivea master equation in the so-called transmon
regime, including coherent drives. Inspired by recent experiments, we then
apply the master equation to describe the dynamics in both a two-level and a
three-level approximation of the atom. In the two-level case, we also discuss
how to measure photon antibunching in the reflected field and how it is
affected by finite temperature and finite detection bandwidth.
We investigate quantum correlations in microwave radiation produced by the
dynamical Casimir effect in a superconducting waveguide terminated and
modulated by a superconducting quantuminterference device. We apply
nonclassicality tests and evaluate the entanglement for the predicted field
states. For realistic circuit parameters, including thermal background noise,
the results indicate that the produced radiation can be strictly nonclassical
and can have a measurable amount of intermode entanglement. If measured
experimentally, these nonclassicalilty indicators could give further evidence
of the quantum nature of the dynamical Casimir radiation in these circuits.