The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with finite coherence time. Reducingthe time required to distinguish qubit states with high fidelity is therefore a critical goal in quantum information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing read-out time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 us. The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.
A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but notlimited to quantum information processing, communication and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam-splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100MHz, is capable of handling photon fluxes on the order of 105μs−1, equivalent to powers exceeding −90dBm, and can be switched within approximately 6−8ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route non-classical itinerant microwave fields at the single-photon level.
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventionalcomputers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources which are polynomial in the number of spins and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
Transferring the state of an information carrier from a sender to a receiver
is an essential primitive in both classical and quantum communication and
information processing. In a quantumprocess known as teleportation the unknown
state of a quantum bit can be relayed to a distant party using shared
entanglement and classical information. Here we present experiments in a
solid-state system based on superconducting quantum circuits demonstrating the
teleportation of the state of a qubit at the macroscopic scale. In our
experiments teleportation is realized deterministically with high efficiency
and achieves a high rate of transferred qubit states. This constitutes a
significant step towards the realization of repeaters for quantum communication
at microwave frequencies and broadens the tool set for quantum information
processing with superconducting circuits.