Magnetic imaging of superconducting qubit devices with scanning SQUID-on-tip

  1. E. Marchiori,
  2. L. Ceccarelli,
  3. N. Rossi,
  4. G. Romagnoli,
  5. J. Herrmann,
  6. J.-C. Besse,
  7. S. Krinner,
  8. A. Wallraff,
  9. and M. Poggio
We use a scanning superconducting quantum interference device (SQUID) to image the magnetic flux produced by a superconducting device designed for quantum computing. The nanometer-scale
SQUID-on-tip probe reveals the flow of superconducting current through the circuit as well as the locations of trapped magnetic flux. In particular, maps of current flowing out of a flux-control line in the vicinity of a qubit show how these elements are coupled, providing insight on how to optimize qubit control.

Demonstration of an All-Microwave Controlled-Phase Gate between Far Detuned Qubits

  1. S. Krinner,
  2. P. Kurpiers,
  3. B. Royer,
  4. P. Magnard,
  5. I. Tsitsilin,
  6. J.-C. Besse,
  7. A. Remm,
  8. A. Blais,
  9. and A. Wallraff
A challenge in building large-scale superconducting quantum processors is to find the right balance between coherence, qubit addressability, qubit-qubit coupling strength, circuit complexity
and the number of required control lines. Leading all-microwave approaches for coupling two qubits require comparatively few control lines and benefit from high coherence but suffer from frequency crowding and limited addressability in multi-qubit settings. Here, we overcome these limitations by realizing an all-microwave controlled-phase gate between two transversely coupled transmon qubits which are far detuned compared to the qubit anharmonicity. The gate is activated by applying a single, strong microwave tone to one of the qubits, inducing a coupling between the two-qubit |f,g⟩ and |g,e⟩ states, with |g⟩, |e⟩, and |f⟩ denoting the lowest energy states of a transmon qubit. Interleaved randomized benchmarking yields a gate fidelity of 97.5±0.3% at a gate duration of 126ns, with the dominant error source being decoherence. We model the gate in presence of the strong drive field using Floquet theory and find good agreement with our data. Our gate constitutes a promising alternative to present two-qubit gates and could have hardware scaling advantages in large-scale quantum processors as it neither requires additional drive lines nor tunable couplers.

Superconducting switch for fast on-chip routing of quantum microwave fields

  1. M. Pechal,
  2. J.-C. Besse,
  3. M. Mondal,
  4. M. Oppliger,
  5. S. Gasparinetti,
  6. and A. Wallraff
A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not
limited to quantum information processing, communication and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam-splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100MHz, is capable of handling photon fluxes on the order of 105μs−1, equivalent to powers exceeding −90dBm, and can be switched within approximately 6−8ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route non-classical itinerant microwave fields at the single-photon level.