Realization of Deterministic Quantum Teleportation with Solid State Qubits

  1. L. Steffen,
  2. A. Fedorov,
  3. M. Oppliger,
  4. Y. Salathe,
  5. P. Kurpiers,
  6. M. Baur,
  7. G. Puebla-Hellmann,
  8. C. Eichler,
  9. and A. Wallraff
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum
process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.

Exploring the Effect of Noise on Geometric Phases using Superconducting Qubits

  1. S. Berger,
  2. M. Pechal,
  3. A. A. Abdumalikov Jr.,
  4. C. Eichler,
  5. L. Steffen,
  6. A. Fedorov,
  7. A. Wallraff,
  8. and S. Filipp
We make use of a superconducting qubit to study the effects of noise on adiabatic geometric phases. The state of the system, an effective spin one-half particle, is adiabatically guided
along a closed path in parameter space and thereby acquires a geometric phase. By introducing artificial fluctuations in the control parameters, we measure the geometric contribution to dephasing for a variety of noise powers and evolution times. Our results clearly show that only fluctuations which distort the path lead to geometric dephasing. In a direct comparison with the dynamic phase, which is path-independent, we observe that the adiabatic geometric phase is less affected by noise-induced dephasing. This observation directly points towards the potential of geometric phases for quantum gates or metrological applications.

Probing Correlations, Indistinguishability and Entanglement in Microwave Two-Photon Interference

  1. C. Lang,
  2. C. Eichler,
  3. L. Steffen,
  4. J. M. Fink,
  5. M. J. Woolley,
  6. A. Blais,
  7. and A. Wallraff
Interference at a beam splitter reveals both classical and quantum properties of electromagnetic radiation. When two indistinguishable single photons impinge at the two inputs of a
beam splitter they coalesce into a pair of photons appearing in either one of its two outputs. This effect is due to the bosonic nature of photons and was first experimentally observed by Hong, Ou, and Mandel (HOM) [1]. Here, we present the observation of the HOM effect with two independent single-photon sources in the microwave frequency domain. We probe the indistinguishability of single photons, created with a controllable delay, in time-resolved second-order cross- and auto-correlation function measurements. Using quadrature amplitude detection we are able to resolve different photon numbers and detect coherence in and between the output arms. This measurement scheme allows us to observe the HOM effect and, in addition, to fully characterize the two-mode entanglement of the spatially separated beam splitter output modes. Our experiments constitute a first step towards using two-photon interference at microwave frequencies for quantum communication and information processing, e.g. for distributing entanglement between nodes of a quantum network [2, 3] and for linear optics quantum computation [4, 5].

Probing Correlations, Indistinguishability and Entanglement in Microwave Two-Photon Interference

  1. C. Lang,
  2. C. Eichler,
  3. L. Steffen,
  4. J. M. Fink,
  5. M. J. Woolley,
  6. A. Blais,
  7. and A. Wallraff
Interference at a beam splitter reveals both classical and quantum properties of electromagnetic radiation. When two indistinguishable single photons impinge at the two inputs of a
beam splitter they coalesce into a pair of photons appearing in either one of its two outputs. This effect is due to the bosonic nature of photons and was first experimentally observed by Hong, Ou, and Mandel (HOM) [1]. Here, we present the observation of the HOM effect with two independent single-photon sources in the microwave frequency domain. We probe the indistinguishability of single photons, created with a controllable delay, in time-resolved second-order cross- and auto-correlation function measurements. Using quadrature amplitude detection we are able to resolve different photon numbers and detect coherence in and between the output arms. This measurement scheme allows us to observe the HOM effect and, in addition, to fully characterize the two-mode entanglement of the spatially separated beam splitter output modes. Our experiments constitute a first step towards using two-photon interference at microwave frequencies for quantum communication and information processing, e.g. for distributing entanglement between nodes of a quantum network [2, 3] and for linear optics quantum computation [4, 5].

Geometric phases in superconducting qubits beyond the two-level-approximation

  1. S. Berger,
  2. M. Pechal,
  3. S. Pugnetti,
  4. A. A. Abdumalikov Jr,
  5. L. Steffen,
  6. A. Fedorov,
  7. A. Wallraff,
  8. and S. Filipp
Geometric phases, which accompany the evolution of a quantum system and depend only on its trajectory in state space, are commonly studied in two-level systems. Here, however, we study
the adiabatic geometric phase in a weakly anharmonic and strongly driven multi-level system, realised as a superconducting transmon-type circuit. We measure the contribution of the second excited state to the two-level geometric phase and find good agreement with theory treating higher energy levels perturbatively. By changing the evolution time, we confirm the independence of the geometric phase of time and explore the validity of the adiabatic approximation at the transition to the non-adiabatic regime.