Realization of Deterministic Quantum Teleportation with Solid State Qubits

  1. L. Steffen,
  2. A. Fedorov,
  3. M. Oppliger,
  4. Y. Salathe,
  5. P. Kurpiers,
  6. M. Baur,
  7. G. Puebla-Hellmann,
  8. C. Eichler,
  9. and A. Wallraff
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum
process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.