Noise reduction in qubit readout with a two-mode squeezed interferometer

  1. G. Liu,
  2. X. Cao,
  3. T.-C. Chien,
  4. C. Zhou,
  5. P. Lu,
  6. and M. Hatridge
Fault-tolerant quantum information processing with flawed qubits and gates requires highly efficient, quantum non-demolition (QND) qubit readout. In superconducting circuits, qubit

Quantum back-action of variable-strength measurement

  1. M. Hatridge,
  2. S. Shankar,
  3. M. Mirrahimi,
  4. F. Schackert,
  5. K. Geerlings,
  6. T. Brecht,
  7. K. M. Sliwa,
  8. B. Abdo,
  9. L. Frunzio,
  10. S. M. Girvin,
  11. R. J. Schoelkopf,
  12. and M. H. Devoret
Measuring a quantum system can randomly perturb its state. The strength and nature of this back-action depends on the quantity which is measured. In a partial measurement performed

Generation of discord through a remote joint continuous variable measurement

  1. E. Zalys-Geller,
  2. A. Narla,
  3. S. Shankar,
  4. M. Hatridge,
  5. M. P. Silveri,
  6. K. Sliwa,
  7. Z. Leghtas,
  8. and M. H. Devoret
In quantum mechanics, continuously measuring an observable steers the system into one eigenstate of that observable. This property has interesting and useful consequences when the observable

Robust concurrent remote entanglement between two superconducting qubits

  1. A. Narla,
  2. S. Shankar,
  3. M. Hatridge,
  4. Z. Leghtas,
  5. K. M. Sliwa,
  6. E. Zalys-Geller,
  7. S. O. Mundhada,
  8. W. Pfaff,
  9. L. Frunzio,
  10. R. J. Schoelkopf,
  11. and M. H. Devoret
Entangling two remote quantum systems which never interact directly is an essential primitive in quantum information science. In quantum optics, remote entanglement experiments provides

2.5D circuit quantum electrodynamics

  1. Z.K. Minev,
  2. K. Serniak,
  3. I.M. Pop,
  4. Z. Leghtas,
  5. K. Sliwa,
  6. M. Hatridge,
  7. L. Frunzio,
  8. R. J. Schoelkopf,
  9. and M. H. Devoret
Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar micro-fabricated

Wireless Josephson Amplifier

  1. A. Narla,
  2. K. M. Sliwa,
  3. M. Hatridge,
  4. S. Shankar,
  5. L. Frunzio,
  6. R. J. Schoelkopf,
  7. and M.H. Devoret
Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current

Tracking Photon Jumps with Repeated Quantum Non-Demolition Parity Measurements

  1. L. Sun,
  2. A. Petrenko,
  3. Z. Leghtas,
  4. B. Vlastakis,
  5. G. Kirchmair,
  6. K. M. Sliwa,
  7. A. Narla,
  8. M. Hatridge,
  9. S. Shankar,
  10. J. Blumoff,
  11. L. Frunzio,
  12. M. Mirrahimi,
  13. M. H. Devoret,
  14. and R. J. Schoelkopf
Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. In QEC, information is redundantly stored in a large

Stabilizing entanglement autonomously between two superconducting qubits

  1. S. Shankar,
  2. M. Hatridge,
  3. Z. Leghtas,
  4. K. M. Sliwa,
  5. A. Narla,
  6. U. Vool,
  7. S. M. Girvin,
  8. L. Frunzio,
  9. M. Mirrahimi,
  10. and M. H. Devoret
Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for

Stabilizing a Bell state of two superconducting qubits by dissipation engineering

  1. Z. Leghtas,
  2. U. Vool,
  3. S. Shankar,
  4. M. Hatridge,
  5. S.M. Girvin,
  6. M.H. Devoret,
  7. and M. Mirrahimi
We propose a dissipation engineering scheme that prepares and protects a maximally entangled state of a pair of superconducting qubits. This is done by off-resonantly coupling the two