Robust concurrent remote entanglement between two superconducting qubits

  1. A. Narla,
  2. S. Shankar,
  3. M. Hatridge,
  4. Z. Leghtas,
  5. K. M. Sliwa,
  6. E. Zalys-Geller,
  7. S. O. Mundhada,
  8. W. Pfaff,
  9. L. Frunzio,
  10. R. J. Schoelkopf,
  11. and M. H. Devoret
Entangling two remote quantum systems which never interact directly is an essential primitive in quantum information science. In quantum optics, remote entanglement experiments provides one approach for loophole-free tests of quantum non-locality and form the basis for the modular architecture of quantum computing. In these experiments, the two qubits, Alice and Bob, are each first entangled with a traveling photon. Subsequently, the two photons paths interfere on a beam-splitter before being directed to single-photon detectors. Such concurrent remote entanglement protocols using discrete Fock states can be made robust to photon losses, unlike schemes that rely on continuous variable states. This robustness arises from heralding the entanglement on the detection of events which can be selected for their unambiguity. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a novel microwave photon detector implemented in the circuit quantum electrodynamics (cQED) framework of superconducting quantum information, and the demonstration, with this detector, of a robust form of concurrent remote entanglement. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

leave comment