Microwave cavities coupled to superconducting qubits have been demonstrated to be a promising platform for quantum information processing. A major challenge in this setup is to realizeuniversal control over the cavity. A promising approach are selective number-dependent arbitrary phase (SNAP) gates combined with cavity displacements. It has been proven that this is a universal gate set, but a central question remained open so far: how can a given target operation be realized efficiently with a sequence of these operations. In this work, we present a practical scheme to address this problem. It involves a hierarchical strategy to insert new gates into a sequence, followed by a co-optimization of the control parameters, which generates short high-fidelity sequences. For a broad range of experimentally relevant applications, we find that they can be implemented with 3 to 4 SNAP gates, compared to up to 50 with previously known techniques.
Modular networks are a promising paradigm for increasingly complex quantum devices based on the ability to transfer qubits and generate entanglement between modules. These tasks requirea low-loss, high-speed intermodule link that enables extensible network connectivity. Satisfying these demands simultaneously remains an outstanding goal for long-range optical quantum networks as well as modular superconducting processors within a single cryostat. We demonstrate communication and entanglement in a superconducting network with a microwave-actuated beamsplitter transformation between two bosonic qubits, which are housed in separate modules and joined by a demountable coaxial bus resonator. We transfer a qubit in a multi-photon encoding and track photon loss events to improve the fidelity, making it as high as in a single-photon encoding. Furthermore, generating entanglement with two-photon interference and postselection against loss errors produces a Bell state with success probability 79% and fidelity 0.94, halving the error obtained with a single photon. These capabilities demonstrate several promising methods for faithful operations between modules, including novel possibilities for resource-efficient direct gates.
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable controlfor quantum information processing. However, the coherent coupling between a quantum device and YIG thin film has yet been demonstrated. Here, we propose a scheme to achieve strong coupling between superconducting flux qubits and magnon modes in YIG thin film. Unlike the direct N−−√ enhancement factor in coupling to the Kittel mode or other spin ensembles, with N the total number of spins, an additional spatial dependent phase factor needs to be considered when the qubits are magnetically coupled with the magnon modes of finite wavelength. To avoid undesirable cancelation of coupling caused by the symmetrical boundary condition, a CoFeB thin layer is added to one side of the YIG thin film to break the symmetry. Our numerical simulation demonstrates avoided crossing and coherent transfer of quantum information between the flux qubits and the standing spin waves in YIG thin films. We show that the YIG thin film can be used as a tunable switch between two flux qubits, which have modified shape with small direct inductive coupling between them. Our results manifest that it is possible to couple flux qubits while suppressing undesirable cross-talk.
Coherent photon conversion between microwave and optics holds promise for the realization of distributed quantum networks, in particular, the architecture that incorporates superconductingquantum processors with optical telecommunication channels. High-frequency gigahertz piezo-mechanics featuring low thermal excitations offers an ideal platform to mediate microwave-optical coupling. However, integrating nanophotonic and superconducting circuits at cryogenic temperatures to simultaneously achieve strong photon-phonon interactions remains a tremendous challenge. Here, we report the first demonstration of an integrated superconducting cavity piezo-optomechanical converter where 10-GHz phonons are resonantly coupled with photons in a superconducting microwave and a nanophotonic cavities at the same time. Benefited from the cavity-enhanced interactions, efficient bidirectional microwave-optical photon conversion is realized with an on-chip efficiency of 0.07% and an internal efficiency of 5.8%. The demonstrated superconducting piezo-optomechanical interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in hybrid quantum systems such as microwave-optical photon entanglement and quantum sensing.
Ancilla systems are often indispensable to universal control of a nearly isolated quantum system. However, ancilla systems are typically more vulnerable to environmental noise, whichlimits the performance of such ancilla-assisted quantum control. To address this challenge of ancilla-induced decoherence, we propose a general framework that integrates quantum control and quantum error correction, so that we can achieve robust quantum gates resilient to ancilla noise. We introduce the path independence criterion for fault-tolerant quantum gates against ancilla errors. As an example, a path-independent gate is provided for superconducting circuits with a hardware-efficient design.
Cooling microwave resonators to near the quantum ground state, crucial for their operation in the quantum regime, is typically achieved by direct device refrigeration to a few tensof millikelvin. However, in quantum experiments that require high operation power such as microwave-to-optics quantum transduction, it is desirable to operate at higher temperatures with non-negligible environmental thermal excitations, where larger cooling power is available. In this Letter, we present a radiative cooling protocol to prepare a superconducting microwave mode near its quantum ground state in spite of warm environment temperatures for the resonator. In this proof-of-concept experiment, the mode occupancy of a 10-GHz superconducting resonator thermally anchored at 1.02~K is reduced to 0.44±0.05 by radiatively coupling to a 70-mK cold load. This radiative cooling scheme allows high-operation-power microwave experiments to work in the quantum regime, and opens possibilities for routing microwave quantum states to elevated temperatures.
The efficient simulation of quantum systems is a primary motivating factor for developing controllable quantum machines. A controllable bosonic machine is naturally suited for simulatingsystems with underlying bosonic structure, exploiting both quantum interference and an intrinsically large Hilbert space. Here, we experimentally realize a bosonic superconducting processor that combines arbitrary state preparation, a complete set of Gaussian operations, plus an essential non-Gaussian resource – a novel single-shot photon number resolving measurement scheme – all in one device. We utilize these controls to simulate the bosonic problem of molecular vibronic spectra, extracting the corresponding Franck-Condon factors for photoelectron processes in H2O, O3, NO2, and SO2. Our results demonstrate the versatile capabilities of the circuit QED platform, which can be extended to include non-Gaussian operations for simulating an even wider class of bosonic systems.
Qubit measurements are central to quantum information processing. In the field of superconducting qubits, standard readout techniques are not only limited by the signal-to-noise ratio,but also by state relaxation during the measurement. In this work, we demonstrate that the limitation due to relaxation can be suppressed by using the many-level Hilbert space of superconducting circuits: in a multilevel encoding, the measurement is only corrupted when multiple errors occur. Employing this technique, we show that we can directly resolve transmon gate errors at the level of one part in 103. Extending this idea, we apply the same principles to the measurement of a logical qubit encoded in a bosonic mode and detected with a transmon ancilla, implementing a proposal by Hann et al. [Phys. Rev. A \textbf{98} 022305 (2018)]. Qubit state assignments are made based on a sequence of repeated readouts, further reducing the overall infidelity. This approach is quite general and several encodings are studied; the codewords are more distinguishable when the distance between them is increased with respect to photon loss. The tradeoff between multiple readouts and state relaxation is explored and shown to be consistent with the photon-loss model. We report a logical assignment infidelity of 5.8×10−5 for a Fock-based encoding and 4.2×10−3 for a QEC code (the S=2,N=1 binomial code). Our results will not only improve the fidelity of quantum information applications, but also enable more precise characterization of process or gate errors.
To solve classically hard problems, quantum computers need to be resilient to the influence of noise and decoherence. In such a fault-tolerant quantum computer, noise-induced errorsmust be detected and corrected in real-time to prevent them from propagating between components. This requirement is especially pertinent while applying quantum gates, when the interaction between components can cause errors to quickly spread throughout the system. However, the large overhead involved in most fault-tolerant architectures makes implementing these systems a daunting task, which motivates the search for hardware-efficient alternatives. Here, we present a gate enacted by a multilevel ancilla transmon on a cavity-encoded logical qubit that is fault-tolerant with respect to decoherence in both the ancilla and the encoded qubit. We maintain the purity of the encoded qubit in the presence of ancilla errors by detecting those errors in real-time, and applying the appropriate corrections. We show a reduction of the logical gate error by a factor of two in the presence of naturally occurring decoherence, and demonstrate resilience against ancilla bit-flips and phase-flips by observing a sixfold suppression of the gate error with increased energy relaxation, and a fourfold suppression with increased dephasing noise. The results demonstrate that bosonic logical qubits can be controlled by error-prone ancilla qubits without inheriting the ancilla’s inferior performance. As such, error-corrected ancilla-enabled gates are an important step towards fully fault-tolerant processing of bosonic qubits.
Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acousticmodes ideal quantum memories, while the qubit-phonon coupling enables the initialization and manipulation of quantum states. We present a scheme for quantum computing with multimode quantum acoustic systems, and based on this scheme, propose a hardware-efficient implementation of a quantum random access memory (qRAM). Quantum information is stored in high-Q phonon modes, and couplings between modes are engineered by applying off-resonant drives to a transmon qubit. In comparison to existing proposals that involve directly exciting the qubit, this scheme can offer a substantial improvement in gate fidelity for long-lived acoustic modes. We show how these engineered phonon-phonon couplings can be used to access data in superposition according to the state of designated address modes–implementing a qRAM on a single chip.