Building a fault-tolerant quantum computer using concatenated cat codes

  1. Christopher Chamberland,
  2. Kyungjoo Noh,
  3. Patricio Arrangoiz-Arriola,
  4. Earl T. Campbell,
  5. Connor T. Hann,
  6. Joseph Iverson,
  7. Harald Putterman,
  8. Thomas C. Bohdanowicz,
  9. Steven T. Flammia,
  10. Andrew Keller,
  11. Gil Refael,
  12. John Preskill,
  13. Liang Jiang,
  14. Amir H. Safavi-Naeini,
  15. Oskar Painter,
  16. and Fernando G.S.L. Brandão
We present a comprehensive architectural analysis for a fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware,
we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated near-term physical parameters for electro-acoustic systems, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic-state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits which are intractable for classical supercomputers. Hardware with 32,000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.

Photon-Number Dependent Hamiltonian Engineering for Cavities

  1. Chiao-Hsuan Wang,
  2. Kyungjoo Noh,
  3. José Lebreuilly,
  4. S. M. Girvin,
  5. and Liang Jiang
Cavity resonators are promising resources for quantum technology, while native nonlinear interactions for cavities are typically too weak to provide the level of quantum control required
to deliver complex targeted operations. Here we investigate a scheme to engineer a target Hamiltonian for photonic cavities using ancilla qubits. By off-resonantly driving dispersively coupled ancilla qubits, we develop an optimized approach to engineering an arbitrary photon-number dependent (PND) Hamiltonian for the cavities while minimizing the operation errors. The engineered Hamiltonian admits various applications including canceling unwanted cavity self-Kerr interactions, creating higher-order nonlinearities for quantum simulations, and designing quantum gates resilient to noise. Our scheme can be implemented with coupled microwave cavities and transmon qubits in superconducting circuit systems.

Quantum information processing with bosonic qubits in circuit QED

  1. Atharv Joshi,
  2. Kyungjoo Noh,
  3. and Yvonne Y. Gao
The unique features of quantum theory offer a powerful new paradigm for information processing. Translating these mathematical abstractions into useful algorithms and applications requires
quantum systems with significant complexity and sufficiently low error rates. Such quantum systems must be made from robust hardware that can coherently store, process, and extract the encoded information, as well as possess effective quantum error correction (QEC) protocols to detect and correct errors. Circuit quantum electrodynamics (cQED) provides a promising hardware platform for implementing robust quantum devices. In particular, bosonic encodings in cQED that use multi-photon states of superconducting cavities to encode information have shown success in realizing hardware-efficient QEC. Here, we review recent developments in the theory and implementation of quantum error correction with bosonic codes and report the progress made towards realizing fault-tolerant quantum information processing with cQED devices.

Path-Independent Quantum Gates with Noisy Ancilla

  1. Wen-Long Ma,
  2. Mengzhen Zhang,
  3. Yat Wong,
  4. Kyungjoo Noh,
  5. Serge Rosenblum,
  6. Philip Reinhold,
  7. Robert J. Schoelkopf,
  8. and Liang Jiang
Ancilla systems are often indispensable to universal control of a nearly isolated quantum system. However, ancilla systems are typically more vulnerable to environmental noise, which
limits the performance of such ancilla-assisted quantum control. To address this challenge of ancilla-induced decoherence, we propose a general framework that integrates quantum control and quantum error correction, so that we can achieve robust quantum gates resilient to ancilla noise. We introduce the path independence criterion for fault-tolerant quantum gates against ancilla errors. As an example, a path-independent gate is provided for superconducting circuits with a hardware-efficient design.

Stabilized Cat in Driven Nonlinear Cavity: A Fault-Tolerant Error Syndrome Detector

  1. Shruti Puri,
  2. Alexander Grimm,
  3. Philippe Campagne-Ibarcq,
  4. Alec Eickbusch,
  5. Kyungjoo Noh,
  6. Gabrielle Roberts,
  7. Liang Jiang,
  8. Mazyar Mirrahimi,
  9. Michel H. Devoret,
  10. and Steven M. Girvin
low-weight operations with an ancilla to extract information about errors without causing backaction on the encoded system. Essentially, ancilla errors must not propagate to the encoded
system and induce errors beyond those which can be corrected. The current schemes for achieving this fault-tolerance to ancilla errors come at the cost of increased overhead requirements. An efficient way to extract error syndromes in a fault-tolerant manner is by using a single ancilla with strongly biased noise channel. Typically, however, required elementary operations can become challenging when the noise is extremely biased. We propose to overcome this shortcoming by using a bosonic-cat ancilla in a parametrically driven nonlinear cavity. Such a cat-qubit experiences only bit-flip noise and is stabilized against phase-flips. To highlight the flexibility of this approach, we illustrate the syndrome extraction process in a variety of codes such as qubit-based toric codes, bosonic cat- and Gottesman-Kitaev-Preskill (GKP) codes. Our results open a path for realizing hardware-efficient, fault-tolerant error syndrome extraction.

Quantum Channel Construction with Circuit Quantum Electrodynamics

  1. Chao Shen,
  2. Kyungjoo Noh,
  3. Victor V. Albert,
  4. Stefan Krastanov,
  5. Michel H. Devoret,
  6. Robert J. Schoelkopf,
  7. S. M. Girvin,
  8. and Liang Jiang
Quantum channels can describe all transformations allowed by quantum mechanics. We provide an explicit universal protocol to construct all possible quantum channels, using a single
qubit ancilla with quantum non-demolition readout and adaptive control. Our construction is efficient in both physical resources and circuit depth, and can be demonstrated using superconducting circuits and various other physical platforms. There are many applications of quantum channel construction, including system stabilization and quantum error correction, Markovian and exotic channel simulation, implementation of generalized quantum measurements and more general quantum instruments. Efficient construction of arbitrary quantum channels opens up exciting new possibilities for quantum control, quantum sensing and information processing tasks.