Benchmarking Single-Qubit Gates on a Noise-Biased Qubit Beyond the Fault-Tolerant Threshold

  1. Bingcheng Qing,
  2. Ahmed Hajr,
  3. Ke Wang,
  4. Gerwin Koolstra,
  5. Long B. Nguyen,
  6. Jordan Hines,
  7. Irwin Huang,
  8. Bibek Bhandari,
  9. Zahra Padramrazi,
  10. Larry Chen,
  11. Ziqi Kang,
  12. Christian Jünger,
  13. Noah Goss,
  14. Nikitha Jain,
  15. Hyunseong Kim,
  16. Kan-Heng Lee,
  17. Akel Hashim,
  18. Nicholas E. Frattini,
  19. Justin Dressel,
  20. Andrew N. Jordan,
  21. David I. Santiago,
  22. and Irfan Siddiqi
The ubiquitous noise in quantum system hinders the advancement of quantum information processing and has driven the emergence of different hardware-efficient quantum error correction
protocols. Among them, qubits with structured noise, especially with biased noise, are one of the most promising platform to achieve fault-tolerance due to the high error thresholds of quantum error correction codes tailored for them. Nevertheless, their quantum operations are challenging and the demonstration of their performance beyond the fault-tolerant threshold remain incomplete. Here, we leverage Schrödinger cat states in a scalable planar superconducting nonlinear oscillator to thoroughly characterize the high-fidelity single-qubit quantum operations with systematic quantum tomography and benchmarking tools, demonstrating the state-of-the-art performance of operations crossing the fault-tolerant threshold of the XZZX surface code. These results thus embody a transformative milestone in the exploration of quantum systems with structured error channels. Notably, our framework is extensible to other types of structured-noise systems, paving the way for systematic characterization and validation of novel quantum platforms with structured noise.

Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits

  1. Alexander Anferov,
  2. Kan-Heng Lee,
  3. Fang Zhao,
  4. Jonathan Simon,
  5. and David I. Schuster
Niobium offers the benefit of increased operating temperatures and frequencies for Josephson junctions, which are the core component of superconducting devices. However existing niobium
processes are limited by more complicated fabrication methods and higher losses than now-standard aluminum junctions. Combining recent trilayer fabrication advancements, methods to remove lossy dielectrics and modern superconducting qubit design, we revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography. We characterize devices in the microwave domain, measuring coherence times up to 62 μs and an average qubit quality factor above 105: much closer to state-of-the-art aluminum-junction devices. We find the higher superconducting gap energy also results in reduced quasiparticle sensitivity above 0.16 K, where aluminum junction performance deteriorates. Our low-loss junction process is readily applied to standard optical-based foundry processes, opening new avenues for direct integration and scalability, and paves the way for higher-temperature and higher-frequency quantum devices.

Autonomous error correction of a single logical qubit using two transmons

  1. Ziqian Li,
  2. Tanay Roy,
  3. David Rodriguez Perez,
  4. Kan-Heng Lee,
  5. Eliot Kapit,
  6. and David I. Schuster
Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits,
along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction (AQEC) instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. We realize an AQEC scheme, implemented with only two transmon qubits in a 2D scalable architecture, that actively corrects single-photon loss and passively suppresses low-frequency dephasing using six microwave drives. Compared to uncorrected encoding, factors of 2.0, 5.1, and 1.4 improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient AQEC to enhance the reliability of a transmon-based quantum information processor.