High-fidelity quantum non-demolition qubit measurement is critical to error correction and rapid qubit feedback in large-scale quantum computing. High-fidelity readout requires passinga short and strong pulse through the qubit’s readout resonator, which is then processed by a sufficiently high bandwidth, high saturation power, and quantum-limited amplifier. We have developed a design pipeline that combines time-domain simulation of the un-truncated device Hamiltonian, fabrication constraints, and maximization of saturation power. We have realized an amplifier based on a modified NIST tri-layer Nb fabrication suite which utilizes an array of 25 radio frequency Superconducting QUantum Interference Devices (rf SQUIDs) embedded within a low-Q resonator powered by a high-power voltage pump delivered via a diplexer on the signal port. We show that, despite the intensity of the pump, the device is quantum-efficient and capable of high-fidelity measurement limited by state transitions in the transmon. We present experimental data demonstrating up to -91.2 dBm input saturation power with 20 dB gain, up to 28 MHz instantaneous bandwidth, and phase-preserving qubit measurements with 62% quantum efficiency.
A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is todesign a system where errors can be detected and converted into erasures. A recent proposal aims to do this using a dual-rail encoding with superconducting cavities. In this work, we implement such a dual-rail cavity qubit and use it to demonstrate a projective logical measurement with erasure detection. We measure logical state preparation and measurement errors at the 0.01%-level and detect over 99% of cavity decay events as erasures. We use the precision of this new measurement protocol to distinguish different types of errors in this system, finding that while decay errors occur with probability ∼0.2% per microsecond, phase errors occur 6 times less frequently and bit flips occur at least 170 times less frequently. These findings represent the first confirmation of the expected error hierarchy necessary to concatenate dual-rail erasure qubits into a highly efficient erasure code.
Traveling wave parametric amplifiers (TWPAs) have recently emerged as essential tools for broadband near quantum-limited amplification. However, their use to generate microwave quantumstates still misses an experimental demonstration. In this letter, we report operation of a TWPA as a source of two-mode squeezed microwave radiation. We demonstrate broadband entanglement generation between two modes separated by up to 400 MHz by measuring logarithmic negativity between 0.27 and 0.51 and collective quadrature squeezing below the vacuum limit between 1.5 and 2.1 dB. This work opens interesting perspectives for the exploration of novel microwave photonics experiments with possible applications in quantum sensing and continuous variable quantum computing.
While relatively easy to engineer, static transverse coupling between a qubit and a cavity mode satisfies the criteria for a quantum non-demolition (QND) measurement only if the couplingbetween the qubit and cavity is much less than their mutual detuning. This can put significant limits on the speed of the measurement, requiring trade-offs in the circuit design between coupling, detuning, and decoherence introduced by the cavity mode. Here, we study a circuit in which the qubit-cavity and the cavity-feedline coupling can be turned on and off, which helps to isolate the qubit. We do not rely on the rotating-wave or dispersive approximations, but solve the full transverse interaction between the qubit and the cavity mode. We show that by carefully choosing the detuning and interaction time, we can exploit a recurrence in the qubit-cavity dynamics in a way that makes it possible to perform very fast, high fidelity, QND measurements. Here, the qubit measurement is performed more like a gate operation between the qubit and the cavity, where the cavity state can be amplified, squeezed, and released in a time-sequenced fashion. In addition, we also show that the non-demolition property of the off-resonant approximation breaks down much faster than its dispersive property, suggesting that many of the dispersive measurements to date have been implemented outside the QND regime.
In this Letter, we demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by parametrically pumping a multimode superconductingcavity. By combining different pump frequencies, applied simultaneously to the device, we can produce different entanglement structures in a programable fashion. The Gaussian output states are fully characterized by measuring the full covariance matrices of the modes. The covariance matrices are absolutely calibrated using an in situ microwave calibration source, a shot noise tunnel junction. Applying a variety of entanglement measures, we demonstrate both full inseparability and genuine tripartite entanglement of the states. Our method is easily extensible to more modes.
We present a superconducting qubit design that is fabricated in a 2D geometry
over a superconducting ground plane to enhance the lifetime. The qubit is
coupled to a microstrip resonatorfor readout. The circuit is fabricated on a
silicon substrate using low loss, stoichiometric titanium nitride for capacitor
pads and small, shadow-evaporated aluminum/aluminum-oxide junctions. We observe
qubit relaxation and coherence times ($T_1$ and $T_2$) of 11.7 $pm$ 0.2 $mu$s
and 8.7 $pm$ 0.3 $mu$s, respectively. Calculations show that the proximity of
the superconducting plane suppresses the otherwise high radiation loss of the
qubit. A significant increase in $T_1$ is projected for a reduced
qubit-to-superconducting plane separation.