Naturally occurring background radiation is a source of correlated decoherence events in superconducting qubits that will challenge error-correction schemes. To characterize the radiationenvironment in an unshielded laboratory, we performed broadband, spectroscopic measurements of background events in silicon substrates located inside a millikelvin refrigerator, an environment representative of superconducting qubit systems. We measured the background spectra in silicon substrates of two thicknesses, 0.5 mm and 1.5 mm, and obtained the average event rate and the integrated power deposition. In a 25 mm^2 area and the thinner substrate, these values are 0.023 events per second and 4.9 keV/s, counting events that deposit at least 40 keV. We find the background spectrum to be nearly featureless. Its intensity decreases by a factor of 40,000 between 100 keV and 3 MeV for silicon substrates 0.5 mm thick. We find the cryogenic measurements to be in good agreement with predictions based on measurements of the terrestrial gamma-ray flux, published models of cosmic-ray fluxes, a crude model of the cryostat, and radiation-transport simulations. No free parameters are required to predict the background spectra in the silicon substrates. The good agreement between measurements and predictions allow assessment of the relative contributions of terrestrial and cosmic background sources and their dependence on substrate thickness. Our spectroscopic measurements are performed with superconducting microresonators that transduce deposited energy to a readily detectable electrical signal. We find that gamma-ray emissions from radioisotopes are responsible for the majority of events depositing E<1.5 MeV, while nucleons among the cosmic-ray secondary particles cause most events that deposit more energy. These results suggest several paths to reducing the impact of background radiation on quantum circuits.[/expand]
This report estimates the potential for secondary emission processes induced by ionizing radiation to result in the generation of quasiparticles in superconducting circuits. These estimatesare based on evaluation of data collected from a small superconducting detector and a fluorescence measurement of typical read-out circuit board materials. Specifically, we study cosmic ray muons interacting with substrate or mechanical support materials present within the vicinity of superconducting circuits. We evaluate the potential for secondary emission, such as scintillation and/or fluorescence, from these nearby materials to occur at sufficient energy (wavelength) and rate (photon flux) to ultimately lead to the breaking of superconducting Copper pairs (i.e., production of quasiparticles). This evaluation leads to a conclusion that material fluorescence in the vicinity of superconducting circuits is a potential contributor to undesirable elevated quasiparticle populations. A co-design approach evaluating superconducting circuit design and the material environment within the immediate vicinity of the circuit would prove beneficial for mitigating undesired environmentally-induced influences on superconducting device performance, such as in direct detection dark matter sensors or quantum computing bits (qubits).
The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However,superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equilibrium by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Previous work has shown that infrared photons significantly increase the quasiparticle density, yet even in the best isolated systems, it still remains higher than expected, suggesting that another generation mechanism exists. In this Letter, we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference, leading to an elevated quasiparticle density that would ultimately limit superconducting qubits of the type measured here to coherence times in the millisecond regime. We further demonstrate that introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time. Albeit a small effect for today’s qubits, reducing or otherwise mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.