Spectroscopic measurements and models of energy deposition in the substrate of quantum circuits by natural ionizing radiation

  1. Joseph W. Fowler,
  2. Paul Szypryt,
  3. Raymond Bunker,
  4. Ellen R. Edwards,
  5. Ian Fogarty Florang,
  6. Jiansong Gao,
  7. Andrea Giachero,
  8. Shannon F. Hoogerheide,
  9. Ben Loer,
  10. H. Pieter Mumm,
  11. Nathan Nakamura,
  12. Galen C. O'Neil,
  13. John L. Orrell,
  14. Elizabeth M. Scott,
  15. Jason Stevens,
  16. Daniel S. Swetz,
  17. Brent A. VanDevender,
  18. Michael Vissers,
  19. and Joel N. Ullom
Naturally occurring background radiation is a source of correlated decoherence events in superconducting qubits that will challenge error-correction schemes. To characterize the radiationenvironment in an unshielded laboratory, we performed broadband, spectroscopic measurements of background events in silicon substrates located inside a millikelvin refrigerator, an environment representative of superconducting qubit systems. We measured the background spectra in silicon substrates of two thicknesses, 0.5 mm and 1.5 mm, and obtained the average event rate and the integrated power deposition. In a 25 mm^2 area and the thinner substrate, these values are 0.023 events per second and 4.9 keV/s, counting events that deposit at least 40 keV. We find the background spectrum to be nearly featureless. Its intensity decreases by a factor of 40,000 between 100 keV and 3 MeV for silicon substrates 0.5 mm thick. We find the cryogenic measurements to be in good agreement with predictions based on measurements of the terrestrial gamma-ray flux, published models of cosmic-ray fluxes, a crude model of the cryostat, and radiation-transport simulations. No free parameters are required to predict the background spectra in the silicon substrates. The good agreement between measurements and predictions allow assessment of the relative contributions of terrestrial and cosmic background sources and their dependence on substrate thickness. Our spectroscopic measurements are performed with superconducting microresonators that transduce deposited energy to a readily detectable electrical signal. We find that gamma-ray emissions from radioisotopes are responsible for the majority of events depositing E<1.5 MeV, while nucleons among the cosmic-ray secondary particles cause most events that deposit more energy. These results suggest several paths to reducing the impact of background radiation on quantum circuits.[/expand]

Materials loss measurements using superconducting microwave resonators

  1. Corey Rae Harrington McRae,
  2. Haozhi Wang,
  3. Jiansong Gao,
  4. Michael Vissers,
  5. Teresa Brecht,
  6. Andrew Dunsworth,
  7. David Pappas,
  8. and Josh Mutus
The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses
at single photon powers and millikelvin temperatures. The identification of low loss fabrication techniques, materials, and thin film dielectrics is critical to achieving scalable architectures for superconducting quantum computing. Superconducting microwave resonators provide a convenient qubit proxy for assessing performance and studying TLS loss and other mechanisms relevant to superconducting circuits such as non-equilibrium quasiparticles and magnetic flux vortices. In this review article, we provide an overview of considerations for designing accurate resonator experiments to characterize loss, including applicable types of loss, cryogenic setup, device design, and methods for extracting material and interface losses, summarizing techniques that have been evolving for over two decades. Results from measurements of a wide variety of materials and processes are also summarized. Lastly, we present recommendations for the reporting of loss data from superconducting microwave resonators to facilitate materials comparisons across the field.

Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

  1. Saptarshi Chaudhuri,
  2. Dale Li,
  3. Kent Irwin,
  4. Clint Bockstiegel,
  5. Johannes Hubmayr,
  6. Joel Ullom,
  7. Michael Vissers,
  8. and Jiansong Gao
We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate
two amplifier designs implementing different phase matching techniques: periodic impedance loadings, and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 ohm characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. With a transmission line length of 20 cm, we have achieved gains of 15 dB over several GHz of bandwidth.