ZZ-Free Two-Transmon CZ Gate Mediated by a Fluxonium Coupler

  1. Junyoung An,
  2. Helin Zhang,
  3. Qi Ding,
  4. Leon Ding,
  5. Youngkyu Sung,
  6. Roni Winik,
  7. Junghyun Kim,
  8. Ilan T. Rosen,
  9. Kate Azar,
  10. Renee DePencier Piñero,
  11. Jeffrey M. Gertler,
  12. Michael Gingras,
  13. Bethany M. Niedzielski,
  14. Hannah Stickler,
  15. Mollie E. Schwartz,
  16. Joel I.J. Wang,
  17. Terry P. Orlando,
  18. Simon Gustavsson,
  19. Max Hays,
  20. Jeffrey A. Grover,
  21. Kyle Serniak,
  22. and William D. Oliver
Eliminating residual ZZ interactions in a two-qubit system is essential for reducing coherent errors during quantum operations. In a superconducting circuit platform, coupling two transmon
qubits via a transmon coupler has been shown to effectively suppress residual ZZ interactions. However, in such systems, perfect cancellation usually requires the qubit-qubit detuning to be smaller than the individual qubit anharmonicities, which exacerbates frequency crowding and microwave crosstalk. To address this limitation, we introduce TFT (Transmon-Fluxonium-Transmon) architecture, wherein two transmon qubits are coupled via a fluxonium qubit. The coupling mediated by the fluxonium eliminates residual ZZ interactions even for transmons detuned larger than their anharmonicities. We experimentally identified zero-ZZ interaction points at qubit-qubit detunings of 409 MHz and 616 MHz from two distinct TFT devices. We then implemented an adiabatic, coupler-flux-biased controlled-Z gate on both devices, achieving CZ gate fidelities of 99.64(6)% and 99.68(8)%.

Probing Sensitivity near a Quantum Exceptional Point using Waveguide Quantum Electrodynamics

  1. Aziza Almanakly,
  2. Reouven Assouly,
  3. Harry Hanlim Kang,
  4. Michael Gingras,
  5. Bethany M. Niedzielski,
  6. Hannah Stickler,
  7. Mollie E. Schwartz,
  8. Kyle Serniak,
  9. Max Hays,
  10. Jeffrey A. Grover,
  11. and William D. Oliver
Non-Hermitian Hamiltonians with complex eigenenergies are useful tools for describing the dynamics of open quantum systems. In particular, parity and time (PT) symmetric Hamiltonians
have generated interest due to the emergence of exceptional-point degeneracies, where both eigenenergies and eigenvectors coalesce as the energy spectrum transitions from real- to complex-valued. Because of the abrupt spectral response near exceptional points, such systems have been proposed as candidates for precision quantum sensing. In this work, we emulate a passive \PT~dimer using a two-mode, non-Hermitian system of superconducting qubits comprising one high-coherence qubit coupled to an intentionally lossy qubit via a tunable coupler. The loss is introduced by strongly coupling the qubit to a continuum of photonic modes in an open waveguide environment. Using both pulsed and continuous-wave measurements, we characterize the system dynamics near the exceptional point. We observe a behavior broadly consistent with an ideal passive \PT~dimer with some corrections due to the tunable coupler element. We extract the complex eigenenergies associated with the two modes and calculate the sensitivity as a function of the coupling strength. Confirming theoretical predictions, we observe no sensitivity enhancement near the quantum exceptional point. This study elucidates the limitations of exceptional-point systems as candidates for quantum-enhanced sensing.

Placing and Routing Non-Local Quantum Error Correcting Codes in Multi-Layer Superconducting Qubit Hardware

  1. Melvin Mathews,
  2. Lukas Pahl,
  3. David Pahl,
  4. Vaishnavi L. Addala,
  5. Catherine Tang,
  6. William D. Oliver,
  7. and Jeffrey A. Grover
Quantum error correcting codes (QECCs) with asymptotically lower overheads than the surface code require non-local connectivity. Leveraging multi-layer routing and long-range coupling
capabilities in superconducting qubit hardware, we develop Hardware-Aware Layout, HAL: a robust, runtime-efficient heuristic algorithm that automates and optimizes the placement and routing of arbitrary QECCs. Using HAL, we perform a comparative study of hardware cost across various families of QECCs, including the bivariate bicycle codes, the open-boundary tile codes, and the constant-depth-decodable radial codes. The layouts produced by HAL confirm that open boundaries significantly reduce the hardware cost, while incurring reductions in logical efficiency. Among the best-performing codes were low-weight radial codes, despite lacking topological structure. Overall, HAL provides a valuable framework for evaluating the hardware feasibility of existing QECCs and guiding the discovery of new codes compatible with realistic hardware constraints.

Emergent Harmonics in Josephson Tunnel Junctions Due to Series Inductance

  1. Junghyun Kim,
  2. Max Hays,
  3. Ilan T. Rosen,
  4. Junyoung An,
  5. Helin Zhang,
  6. Aranya Goswami,
  7. Kate Azar,
  8. Jeffrey M. Gertler,
  9. Bethany M. Niedzielski,
  10. Mollie E. Schwartz,
  11. Terry P. Orlando,
  12. Jeffrey A. Grover,
  13. Kyle Serniak,
  14. and William D. Oliver
Josephson tunnel junctions are essential elements of superconducting quantum circuits. The operability of these circuits presumes a 2π-periodic sinusoidal potential of a tunnel junction,
but higher-order corrections to this Josephson potential, often referred to as „harmonics,“ cause deviations from the expected circuit behavior. Two potential sources for these harmonics are the intrinsic current-phase relationship of the Josephson junction and the inductance of the metallic traces connecting the junction to other circuit elements. Here, we introduce a method to distinguish the origin of the observed harmonics using nearly-symmetric superconducting quantum interference devices (SQUIDs). Spectroscopic measurements of level transitions in multiple devices reveal features that cannot be explained by a standard cosine potential, but are accurately reproduced when accounting for a second-harmonic contribution to the model. The observed scaling of the second harmonic with Josephson-junction size indicates that it is due almost entirely to the trace inductance. These results inform the design of next-generation superconducting circuits for quantum information processing and the investigation of the supercurrent diode effect.

Temperature and Magnetic-Field Dependence of Energy Relaxation in a Fluxonium Qubit

  1. Lamia Ateshian,
  2. Max Hays,
  3. David A. Rower,
  4. Helin Zhang,
  5. Kate Azar,
  6. Réouven Assouly,
  7. Leon Ding,
  8. Michael Gingras,
  9. Hannah Stickler,
  10. Bethany M. Niedzielski,
  11. Mollie E. Schwartz,
  12. Terry P. Orlando,
  13. Joel I.J. Wang,
  14. Simon Gustavsson,
  15. Jeffrey A. Grover,
  16. Kyle Serniak,
  17. and William D. Oliver
Noise from material defects at device interfaces is known to limit the coherence of superconducting circuits, yet our understanding of the defect origins and noise mechanisms remains
incomplete. Here we investigate the temperature and in-plane magnetic-field dependence of energy relaxation in a low-frequency fluxonium qubit, where the sensitivity to flux noise and charge noise arising from dielectric loss can be tuned by applied flux. We observe an approximately linear scaling of flux noise with temperature T and a power-law dependence of dielectric loss T3 up to 100 mK. Additionally, we find that the dielectric-loss-limited T1 decreases with weak in-plane magnetic fields, suggesting a potential magnetic-field response of the underlying charge-coupled defects. We implement a multi-level decoherence model in our analysis, motivated by the widely tunable matrix elements and transition energies approaching the thermal energy scale in our system. These findings offer insight for fluxonium coherence modeling and should inform microscopic theories of intrinsic noise in superconducting circuits.

Theory of Quasiparticle Generation by Microwave Drives in Superconducting Qubits

  1. Shoumik Chowdhury,
  2. Max Hays,
  3. Shantanu R. Jha,
  4. Kyle Serniak,
  5. Terry P. Orlando,
  6. Jeffrey A. Grover,
  7. and William D. Oliver
Microwave drives are commonly employed to control superconducting quantum circuits, enabling qubit gates, readout, and parametric interactions. As the drive frequencies are typically
an order of magnitude smaller than (twice) the superconducting gap, it is generally assumed that such drives do not disturb the BCS ground state. However, sufficiently strong drives can activate multi-photon pair-breaking processes that generate quasiparticles and result in qubit errors. In this work, we present a theoretical framework for calculating the rates of multi-photon-assisted pair-breaking transitions induced by both charge- and flux-coupled microwave drives. Through illustrative examples, we show that drive-induced QP generation may impact novel high-frequency dispersive readout architectures, as well as Floquet-engineered superconducting circuits operating under strong driving conditions.

Efficient Qubit Calibration by Binary-Search Hamiltonian Tracking

  1. Fabrizio Berritta,
  2. Jacob Benestad,
  3. Lukas Pahl,
  4. Melvin Mathews,
  5. Jan A. Krzywda,
  6. Réouven Assouly,
  7. Youngkyu Sung,
  8. David K. Kim,
  9. Bethany M. Niedzielski,
  10. Kyle Serniak,
  11. Mollie E. Schwartz,
  12. Jonilyn L. Yoder,
  13. Anasua Chatterjee,
  14. Jeffrey A. Grover,
  15. Jeroen Danon,
  16. William D. Oliver,
  17. and Ferdinand Kuemmeth
We present a real-time method for calibrating the frequency of a resonantly driven qubit. The real-time processing capabilities of a controller dynamically compute adaptive probing
sequences for qubit-frequency estimation. Each probing time and drive frequency are calculated to divide the prior probability distribution into two branches, following a locally optimal strategy that mimics a conventional binary search. We show the algorithm’s efficacy by stabilizing a flux-tunable transmon qubit, leading to improved coherence and gate fidelity. By feeding forward the updated qubit frequency, the FPGA-powered control electronics also mitigates non-Markovian noise in the system, which is detrimental to quantum error correction. Our protocol highlights the importance of feedback in improving the calibration and stability of qubits subject to drift and can be readily applied to other qubit platforms.

Flat-band (de)localization emulated with a superconducting qubit array

  1. Ilan T. Rosen,
  2. Sarah Muschinske,
  3. Cora N. Barrett,
  4. David A. Rower,
  5. Rabindra Das,
  6. David K. Kim,
  7. Bethany M. Niedzielski,
  8. Meghan Schuldt,
  9. Kyle Serniak,
  10. Mollie E. Schwartz,
  11. Jonilyn L. Yoder,
  12. Jeffrey A. Grover,
  13. and William D. Oliver
Arrays of coupled superconducting qubits are analog quantum simulators able to emulate a wide range of tight-binding models in parameter regimes that are difficult to access or adjust
in natural materials. In this work, we use a superconducting qubit array to emulate a tight-binding model on the rhombic lattice, which features flat bands. Enabled by broad adjustability of the dispersion of the energy bands and of on-site disorder, we examine regimes where flat-band localization and Anderson localization compete. We observe disorder-induced localization for dispersive bands and disorder-induced delocalization for flat bands. Remarkably, we find a sudden transition between the two regimes and, in its vicinity, the semblance of quantum critical scaling.

Remote Entangling Gates for Spin Qubits in Quantum Dots using an Offset-Charge-Sensitive Transmon Coupler

  1. Harry Hanlim Kang,
  2. Ilan T. Rosen,
  3. Max Hays,
  4. Jeffrey A. Grover,
  5. and William D. Oliver
We propose a method to realize microwave-activated CZ gates between two remote spin qubits in quantum dots using an offset-charge-sensitive transmon coupler. The qubits are longitudinally
coupled to the coupler, so that the transition frequency of the coupler depends on the logical qubit states; a capacitive network model using first-quantized charge operators is developed to illustrate this. Driving the coupler transition then implements a conditional phase shift on the qubits. Two pulsing schemes are investigated: a rapid, off-resonant pulse with constant amplitude, and a pulse with envelope engineering that incorporates dynamical decoupling to mitigate charge noise. We develop non-Markovian time-domain simulations to accurately model gate performance in the presence of 1/fβ charge noise. Simulation results indicate that a CZ gate fidelity exceeding 90% is possible with realistic parameters and noise models.

Deterministic remote entanglement using a chiral quantum interconnect

  1. Aziza Almanakly,
  2. Beatriz Yankelevich,
  3. Max Hays,
  4. Bharath Kannan,
  5. Reouven Assouly,
  6. Alex Greene,
  7. Michael Gingras,
  8. Bethany M. Niedzielski,
  9. Hannah Stickler,
  10. Mollie E. Schwartz,
  11. Kyle Serniak,
  12. Joel I.J. Wang,
  13. Terry P. Orlando,
  14. Simon Gustavsson,
  15. Jeffrey A. Grover,
  16. and William D. Oliver
Quantum interconnects facilitate entanglement distribution between non-local computational nodes. For superconducting processors, microwave photons are a natural means to mediate this
distribution. However, many existing architectures limit node connectivity and directionality. In this work, we construct a chiral quantum interconnect between two nominally identical modules in separate microwave packages. We leverage quantum interference to emit and absorb microwave photons on demand and in a chosen direction between these modules. We optimize the protocol using model-free reinforcement learning to maximize absorption efficiency. By halting the emission process halfway through its duration, we generate remote entanglement between modules in the form of a four-qubit W state with 62.4 +/- 1.6% (leftward photon propagation) and 62.1 +/- 1.2% (rightward) fidelity, limited mainly by propagation loss. This quantum network architecture enables all-to-all connectivity between non-local processors for modular and extensible quantum computation.