Loading quantum information deterministically onto a quantum node is an important step towards a quantum network. Here, we demonstrate that coherent-state microwave photons, with anoptimal temporal waveform, can be efficiently loaded onto a single superconducting artificial atom in a semi-infinite one-dimensional (1D) transmission-line waveguide. Using a weak coherent state (average photon number N<<1 with an exponentially rising waveform, whose time constant matches the decoherence time of the artificial atom, we demonstrate a loading efficiency of above 94% from 1D semi-free space to the artificial atom. We also show that Fock-state microwave photons can be deterministically loaded with an efficiency of 98.5%. We further manipulate the phase of the coherent state exciting the atom, enabling coherent control of the loading process. Our results open up promising applications in realizing quantum networks based on waveguide quantum electrodynamics (QED).[/expand]
We investigate the Landau-Zener-Stuckelberg-Majorana interferometry of a superconducting qubit in a semi-infinite transmission line terminated by a mirror. The transmon-type qubit isat the node of the resonant electromagnetic (EM) field, hiding from the EM field. „Mirror, mirror“ briefly describes this system, because the qubit acts as another mirror. We modulate the resonant frequency of the qubit by applying a sinusoidal flux pump. We probe the spectroscopy by measuring the reflection coefficient of a weak probe in the system. Remarkable interference patterns emerge in the spectrum, which can be interpreted as multi-photon resonances in the dressed qubit. Our calculations agree well with the experiments.
Virtual photons can mediate interaction between atoms, resulting in an energy shift known as a collective Lamb shift. Observing the collective Lamb shift is challenging, since it canbe obscured by radiative decay and direct atom-atom interactions. Here, we place two superconducting qubits in a transmission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and exceeding the transition linewidth. We also show that the qubits can interact via the transmission line even if one of them does not decay into it.
Amplification of optical or microwave fields is often achieved by strongly driving a medium to induce population inversion such that a weak probe can be amplified through stimulatedemission. Here we strongly couple a superconducting qubit, an artificial atom, to the field in a semi-infinite waveguide. When driving the qubit strongly on resonance such that a Mollow triplet appears, we observe a 7\% amplitude gain for a weak probe at frequencies in-between the triplet. This amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-state basis, but instead results from a four-photon process that converts energy from the strong drive to the weak probe. We find excellent agreement between the experimental results and numerical simulations without any free fitting parameters. The device demonstrated here may have applications in quantum information processing and quantum-limited measurements.
Surface distributions of two level system (TLS) defects and magnetic vortices are limiting dissipation sources in superconducting quantum circuits. Arrays of flux-trapping holes arecommonly used to eliminate loss due to magnetic vortices, but may increase dielectric TLS loss. We find that dielectric TLS loss increases by approximately 25% for resonators with a hole array beginning 2 μm from the resonator edge, while the dielectric loss added by holes further away was below measurement sensitivity. Other forms of loss were not affected by the holes. Additionally, we bound the loss tangent due to residual magnetic effects to <9×10−11/mG for resonators patterned with flux-traps and operated in magnetic fields up to 50mG.[/expand]
Since the inception of quantum mechanics, its validity as a complete description of reality has been challenged due to predictions that defy classical intuition. For many years it wasunclear whether predictions like entanglement and projective measurement represented real phenomena or artifacts of an incomplete model. Bell inequalities (BI) provided the first quantitative test to distinguish between quantum entanglement and a yet undiscovered classical hidden variable theory. The Leggett-Garg inequality (LGI) provides a similar test for projective measurement, and more recently has been adapted to include variable strength measurements to study the process of measurement itself. Here we probe the intersection of both entanglement and measurement through the lens of the hybrid Bell-Leggett-Garg inequality (BLGI). By correlating data from ancilla-based weak measurements and direct projective measurements, we for the first time quantify the effect of measurement strength on entanglement collapse. Violation of the BLGI, which we achieve only at the weakest measurement strengths, offers compelling evidence of the completeness of quantum mechanics while avoiding several loopholes common to previous experimental tests. This uniquely quantum result significantly constrains the nature of any possible classical theory of reality. Additionally, we demonstrate that with sufficient scale and fidelity, a universal quantum processor can be used to study richer fundamental physics.
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers(TWPAs) promise similar noise performance while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12\,dB across a 4\,GHz span, along with an average saturation power of -92\,dBm with noise approaching the quantum limit.
Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universalquantum simulation of fermionic systems is daunting due to their particle statistics, and Feynman left as an open question whether it could be done, because of the need for non-local control. Here, we implement fermionic interactions with digital techniques in a superconducting circuit. Focusing on the Hubbard model, we perform time evolution with constant interactions as well as a dynamic phase transition with up to four fermionic modes encoded in four qubits. The implemented digital approach is universal and allows for the efficient simulation of fermions in arbitrary spatial dimensions. We use in excess of 300 single-qubit and two-qubit gates, and reach global fidelities which are limited by gate errors. This demonstration highlights the feasibility of the digital approach and opens a viable route towards analog-digital quantum simulation of interacting fermions and bosons in large-scale solid state systems.
Quantum computing becomes viable when a quantum state can be preserved from environmentally-induced error. If quantum bits (qubits) are sufficiently reliable, errors are sparse andquantum error correction (QEC) is capable of identifying and correcting them. Adding more qubits improves the preservation by guaranteeing increasingly larger clusters of errors will not cause logical failure – a key requirement for large-scale systems. Using QEC to extend the qubit lifetime remains one of the outstanding experimental challenges in quantum computing. Here, we report the protection of classical states from environmental bit-flip errors and demonstrate the suppression of these errors with increasing system size. We use a linear array of nine qubits, which is a natural precursor of the two-dimensional surface code QEC scheme, and track errors as they occur by repeatedly performing projective quantum non-demolition (QND) parity measurements. Relative to a single physical qubit, we reduce the failure rate in retrieving an input state by a factor of 2.7 for five qubits and a factor of 8.5 for nine qubits after eight cycles. Additionally, we tomographically verify preservation of the non-classical Greenberger-Horne-Zeilinger (GHZ) state. The successful suppression of environmentally-induced errors strongly motivates further research into the many exciting challenges associated with building a large-scale superconducting quantum computer.
Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a veryreal impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a „mirror“, creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum.