Stable and Efficient Charging of Superconducting C-shunt Flux Quantum Batteries

  1. Li Li,
  2. Si-Lu Zhao,
  3. Yun-Hao Shi,
  4. Bing-Jie Chen,
  5. Xinhui Ruan,
  6. Gui-Han Liang,
  7. Wei-Ping Yuan,
  8. Jia-Cheng Song,
  9. Cheng-Lin Deng,
  10. Yu Liu,
  11. Tian-Ming Li,
  12. Zheng-He Liu,
  13. Xue-Yi Guo,
  14. Xiaohui Song,
  15. Kai Xu,
  16. Heng Fan,
  17. Zhongcheng Xiang,
  18. and Dongning Zheng
Quantum batteries, as miniature energy storage devices, have sparked significant research interest in recent years. However, achieving rapid and stable energy transfer in quantum batteries
while obeying quantum speed limits remains a critical challenge. In this work, we experimentally optimize the charging process by leveraging the unique energy level structure of a superconducting capacitively-shunted flux qubit, using counterdiabatic pulses in the stimulated Raman adiabatic passage. Compared to previous studies, we impose two different norm constraints on the driving Hamiltonian, achieving optimal charging without exceeding the overall driving strength. Furthermore, we experimentally demonstrate a charging process that achieves the quantum speed limit. In addition, we introduce a dimensionless parameter  to unify charging speed and stability, offering a universal metric for performance optimization. In contrast to metrics such as charging power and thermodynamic efficiency, the  criterion quantitatively captures the stability of ergentropy while also considering the charging speed. Our results highlight the potential of the capacitively-shunted qubit platform as an ideal candidate for realizing three-level quantum batteries and deliver novel strategies for optimizing energy transfer protocols.

Direct Implementation of High-Fidelity Three-Qubit Gates for Superconducting Processor with Tunable Couplers

  1. Hao-Tian Liu,
  2. Bing-Jie Chen,
  3. Jia-Chi Zhang,
  4. Yong-Xi Xiao,
  5. Tian-Ming Li,
  6. Kaixuan Huang,
  7. Ziting Wang,
  8. Hao Li,
  9. Kui Zhao,
  10. Yueshan Xu,
  11. Cheng-Lin Deng,
  12. Gui-Han Liang,
  13. Zheng-He Liu,
  14. Si-Yun Zhou,
  15. Cai-Ping Fang,
  16. Xiaohui Song,
  17. Zhongcheng Xiang,
  18. Dongning Zheng,
  19. Yun-Hao Shi,
  20. Kai Xu,
  21. and Heng Fan
Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary. However, direct implementation of three-qubit
gates reduces the depth of quantum circuits, streamlines quantum programming, and facilitates efficient circuit optimization, thereby enhancing overall performance in quantum computation. In this work, we propose and experimentally demonstrate a high-fidelity scheme for implementing a three-qubit controlled-controlled-Z (CCZ) gate in a flip-chip superconducting quantum processor with tunable couplers. This direct CCZ gate is implemented by simultaneously leveraging two tunable couplers interspersed between three qubits to enable three-qubit interactions, achieving an average final state fidelity of 97.94% and a process fidelity of 93.54%. This high fidelity cannot be achieved through a simple combination of single- and two-qubit gate sequences from processors with similar performance levels. Our experiments also verify that multi-layer direct implementation of the CCZ gate exhibits lower leakage compared to decomposed gate approaches. To further showcase the versatility of our approach, we construct a Toffoli gate by combining the CCZ gate with Hadamard gates. As a showcase, we utilize the CCZ gate as an oracle to implement the Grover search algorithm on three qubits, demonstrating high performance with the target probability amplitude significantly enhanced after two iterations. These results highlight the advantage of our approach, and facilitate the implementation of complex quantum circuits.

Tunable coupling of a quantum phononic resonator to a transmon qubit with flip-chip architecture

  1. Xinhui Ruan,
  2. Li Li,
  3. Guihan Liang,
  4. Silu Zhao,
  5. Jia-heng Wang,
  6. Yizhou Bu,
  7. Bingjie Chen,
  8. Xiaohui Song,
  9. Xiang Li,
  10. He Zhang,
  11. Jinzhe Wang,
  12. Qianchuan Zhao,
  13. Kai Xu,
  14. Heng Fan,
  15. Yu-xi Liu,
  16. Jing Zhang,
  17. Zhihui Peng,
  18. Zhongcheng Xiang,
  19. and Dongning Zheng
A hybrid system with tunable coupling between phonons and qubits shows great potential for advancing quantum information processing. In this work, we demonstrate strong and tunable
coupling between a surface acoustic wave (SAW) resonator and a transmon qubit based on galvanic-contact flip-chip technique. The coupling strength varies from 2π×7.0 MHz to -2π×20.6 MHz, which is extracted from different vacuum Rabi oscillation frequencies. The phonon-induced ac Stark shift of the qubit at different coupling strengths is also shown. Our approach offers a good experimental platform for exploring quantum acoustics and hybrid systems.

Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields

  1. Xinhui Ruan,
  2. Jia-Heng Wang,
  3. Dong He,
  4. Pengtao Song,
  5. Shengyong Li,
  6. Qianchuan Zhao,
  7. L.M. Kuang,
  8. Jaw-Shen Tsai,
  9. Chang-Ling Zou,
  10. Jing Zhang,
  11. Dongning Zheng,
  12. O. V. Astafiev,
  13. Yu-xi Liu,
  14. and Zhihui Peng
We report an experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity. One of the fields
is classical and the other is varied from quantum (vacuum fluctuations) to classical one by controlling the photon number inside the cavity. The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator. We observe a sideband anti-crossing and asymmetry in the emission spectra of the system through a one-dimensional transmission line, which is fundamentally different from the weak coupling case. By changing the photon number inside the cavity, the emission spectrum of our doubly driven system approaches to the case when the atom is driven by two classical bichromatic fields. We also measure the dynamical evolution of the system through the transmission line and study the properties of the first-order correlation function, Rabi oscillations and energy relaxation in the system. The study of resonance fluorescence from an atom driven by two fields promotes understanding decoherence in superconducting quantum circuits and may find applications in superconducting quantum computing and quantum networks.

Observation of critical phase transition in a generalized Aubry-André-Harper model on a superconducting quantum processor with tunable couplers

  1. Hao Li,
  2. Yong-Yi Wang,
  3. Yun-Hao Shi,
  4. Kaixuan Huang,
  5. Xiaohui Song,
  6. Gui-Han Liang,
  7. Zheng-Yang Mei,
  8. Bozhen Zhou,
  9. He Zhang,
  10. Jia-Chi Zhang,
  11. Shu Chen,
  12. Shiping Zhao,
  13. Ye Tian,
  14. Zhan-Ying Yang,
  15. Zhongcheng Xiang,
  16. Kai Xu,
  17. Dongning Zheng,
  18. and Heng Fan
Quantum simulation enables study of many-body systems in non-equilibrium by mapping to a controllable quantum system, providing a new tool for computational intractable problems. Here,
using a programmable quantum processor with a chain of 10 superconducting qubits interacted through tunable couplers, we simulate the one-dimensional generalized Aubry-André-Harper model for three different phases, i.e., extended, localized and critical phases. The properties of phase transitions and many-body dynamics are studied in the presence of quasi-periodic modulations for both off-diagonal hopping coefficients and on-site potentials of the model controlled respectively by adjusting strength of couplings and qubit frequencies. We observe the spin transport for initial single- and multi-excitation states in different phases, and characterize phase transitions by experimentally measuring dynamics of participation entropies. Our experimental results demonstrate that the newly developed tunable coupling architecture of superconducting processor extends greatly the simulation realms for a wide variety of Hamiltonians, and may trigger further investigations on various quantum and topological phenomena.

Entanglement-interference complementarity and experimental demonstration in a superconducting circuit

  1. Xin-Jie Huang,
  2. Pei-Rong Han,
  3. Wen Ning,
  4. Shou-Ban Yang,
  5. Xin Zhu,
  6. Jia-Hao Lü,
  7. Ri-Hua Zheng,
  8. Hekang Li,
  9. Zhen-Biao Yang,
  10. Qi-Cheng Wu,
  11. Kai Xu,
  12. Chui-Ping Yang,
  13. Dongning Zheng,
  14. Heng Fan,
  15. and Shi-Biao Zheng
Quantum entanglement between an interfering particle and a detector for acquiring the which-path information plays a central role for enforcing Bohr’s complementary principle,
but the quantitative relation between this entanglement and the fringe visibility remains untouched upon. Here we find an equality for quantifying this relation. Our equality characterizes how well the interference pattern can be preserved when an interfering particle, initially carrying a definite amount of coherence, is entangled with a which-path detector to a certain degree. This equality provides a connection between entanglement and interference in the unified framework of coherence, revealing the quantitative entanglement-interference complementarity for the first time. We experimentally demonstrate this relation with a superconducting circuit, where a resonator serves as a which-path detector for an interfering qubit. The results demonstrate quantum entanglement is the mechanism for prohibiting any detector from acquiring which-path information without deteriorating the interference pattern, which was not confirmed previously.

Observation of Emergent ℤ2 Gauge Invariance in a Superconducting Circuit

  1. Zhan Wang,
  2. Zi-Yong Ge,
  3. Zhongcheng Xiang,
  4. Xiaohui Song,
  5. Rui-Zhen Huang,
  6. Pengtao Song,
  7. Xue-Yi Guo,
  8. Luhong Su,
  9. Kai Xu,
  10. Dongning Zheng,
  11. and Heng Fan
Lattice gauge theory (LGT) is one of the most fundamental subjects in modern quantum many-body physics, and has recently attracted many research interests in quantum simulations. Here
we experimentally investigate the emergent ℤ2 gauge invariance in a 1D superconducting circuit with 10 transmon qubits. By precisely adjusting the staggered longitude and transverse fields to each qubit, we construct an effective Hamiltonian containing a LGT and gauge-broken terms. The corresponding matter sector can exhibit localization, and there also exist a 3-qubit operator, of which the expectation value can retain nonzero for long time in a low-energy regime. The above localization can be regarded as confinement of the matter field, and the 3-body operator is the ℤ2 gauge generator. Thus, these experimental results demonstrate that, despite the absent of gauge structure in the effective Hamiltonian, ℤ2 gauge invariance can still emerge in the low-energy regime. Our work paves the way for both theoretically and experimentally studying the rich physics in quantum many-body system with an emergent gauge invariance.

Metrological characterisation of non-Gaussian entangled states of superconducting qubits

  1. Kai Xu,
  2. Yu-Ran Zhang,
  3. Zheng-Hang Sun,
  4. Hekang Li,
  5. Pengtao Song,
  6. Zhongcheng Xiang,
  7. Kaixuan Huang,
  8. Hao Li,
  9. Yun-Hao Shi,
  10. Chi-Tong Chen,
  11. Xiaohui Song,
  12. Dongning Zheng,
  13. Franco Nori,
  14. H. Wang,
  15. and Heng Fan
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted to
achieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterises the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalisation of the RSP with respect to nonlinear observables, and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, here we report the characterisation of multiparticle entangled states generated during its nonlinear dynamics. First, selecting 10 qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89[Math Processing Error] dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.

Rapid and Unconditional Parametric Reset Protocol for Tunable Superconducting Qubits

  1. Yu Zhou,
  2. Zhenxing Zhang,
  3. Zelong Yin,
  4. Sainan Huai,
  5. Xiu Gu,
  6. Xiong Xu,
  7. Jonathan Allcock,
  8. Fuming Liu,
  9. Guanglei Xi,
  10. Qiaonian Yu,
  11. Hualiang Zhang,
  12. Mengyu Zhang,
  13. Hekang Li,
  14. Xiaohui Song,
  15. Zhan Wang,
  16. Dongning Zheng,
  17. Shuoming An,
  18. Yarui Zheng,
  19. and Shengyu Zhang
Qubit initialization is critical for many quantum algorithms and error correction schemes, and extensive efforts have been made to achieve this with high speed and efficiency. Here
we experimentally demonstrate a fast and high fidelity reset scheme for tunable superconducting qubits. A rapid decay channel is constructed by modulating the flux through a transmon qubit and realizing a swap between the qubit and its readout resonator. The residual excited population can be suppressed to 0.08% ± 0.08% within 34 ns, and the scheme requires no additional chip architecture, projective measurements, or feedback loops. In addition, the scheme has negligible effects on neighboring qubits, and is therefore suitable for large-scale multi-qubit systems. Our method also offers a way of entangling the qubit state with an itinerant single photon, particularly useful in quantum communication and quantum network applications.

Demonstration of a non-Abelian geometric controlled-Not gate in a superconducting circuit

  1. Kai Xu,
  2. Wen Ning,
  3. Xin-Jie Huang,
  4. Pei-Rong Han,
  5. Hekang Li,
  6. Zhen-Biao Yang,
  7. Dongning Zheng,
  8. Heng Fan,
  9. and Shi-Biao Zheng
Holonomies, arising from non-Abelian geometric transformations of quantum states in Hilbert space, offer a promising way for quantum computation. The non-community of these holonomies
renders them suitable for realization of a universal set of quantum logic gates, while the global geometric feature may result in some noise-resilient advantages. Here we report on the first on-chip realization of the non-Abelian geometric controlled-Not gate, which is a buidling block for constructing a holonomic quantum computer. The conditional dynamics is achieved in an all-to-all connected architecture involving multiple frequency-tunable superconducting qubits controllably coupled to a resonator; a holonomic gate between any two qubits can be implemented by tuning their frequencies on resonance with the resonator and applying a two-tone drive to one of them. The combination of the present gate and previously demonstrated holonomic single-qubit operations represents an all-holonomic approach to scalable quantum computation on a superconducting platform.