Leakage, the occupation of any state not used in the computation, is one of the of the most devastating errors in quantum error correction. Transmons, the most common superconductingqubits, are weakly anharmonic multilevel systems, and are thus prone to this type of error. Here we demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude, while protecting the qubit lifetime and the single-qubit gate fidelties. To do this we attach a qubit through an on-chip seventh-order Chebyshev filter to a cold resistor. The filter is engineered such that the leakage transitions are in its passband, while the qubit transition is in its stopband. Dissipation through the filter reduces the lifetime of the transmon’s f state, the lowest energy leakage state, by three orders of magnitude to 33 ns, while simultaneously keeping the qubit lifetime to greater than 100 μs. Even though the f state is transiently populated during a single qubit gate, no negative effect of the filter is detected with errors per gate approaching 1e-4. Modelling the filter as coupled linear harmonic oscillators, our theoretical analysis of the device corroborate our experimental findings. This leakage reduction unit turns leakage errors into errors within the qubit subspace that are correctable with traditional quantum error correction. We demonstrate the operation of the filter as leakage reduction unit in a mock-up of a single-qubit quantum error correcting cycle, showing that the filter increases the seepage rate back to the qubit subspace.
Efficient quantum control of an oscillator is necessary for many bosonic applications including error-corrected computation, quantum-enhanced sensing, robust quantum communication,and quantum simulation. For these applications, oscillator control is often realized through off-resonant hybridization to a qubit with dispersive shift χ where typical operation times of 2π/χ are routinely assumed. Here, we challenge this assumption by introducing and demonstrating a novel control method with typical operation times over an order of magnitude faster than 2π/χ. Using large auxiliary displacements of the oscillator to enhance gate speed, we introduce a universal gate set with built-in dynamical decoupling consisting of fast conditional displacements and qubit rotations. We demonstrate the method using a superconducting cavity weakly coupled to a transmon qubit in a regime where previously known methods would fail. Our demonstrations include preparation of a single-photon state 30 times faster than 2π/χ with 98±1(%) fidelity and preparation of squeezed vacuum with a squeezing level of 11.1 dB, the largest intracavity squeezing reported in the microwave regime. Finally, we demonstrate fast measurement-free preparation of logical states for the binomial and Gottesman-Kitaev-Preskill (GKP) code, and we identify possible fidelity limiting mechanisms including oscillator dephasing.
Superconducting circuits are a strong contender for realizing quantum computing systems, and are also successfully used to study quantum optics and hybrid quantum systems. However,their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks either spanning different cryogenics systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters. We transfer qubit states and generate entanglement on-demand with average transfer and target state fidelities of 85.8 % and 79.5 %, respectively, between the two nodes of this elementary network. Cryogenic microwave links do provide an opportunity to scale up systems for quantum computing and create local area quantum communication networks over length scales of at least tens of meters.
Detecting traveling photons is an essential primitive for many quantum information processing tasks. We introduce a single-photon detector design operating in the microwave domain,based on a weakly nonlinear metamaterial where the nonlinearity is provided by a large number of Josephson junctions. The combination of weak nonlinearity and large spatial extent circumvents well-known obstacles limiting approaches based on a localized Kerr medium. Using numerical many-body simulations we show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths. A remarkable feature of the detector is that the metamaterial approach allows for a large detection bandwidth. In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed. The detector design we introduce offers new possibilities for quantum information processing, quantum optics and metrology in the microwave frequency domain.
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example,by monitoring for photon loss at the receiving end of the quantum link while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit QED and is fully microwave-controlled, making it an interesting candidate for future modular quantum computing architectures.
Multi-qubit parity measurements are essential to quantum error correction. Current realizations of these measurements often rely on ancilla qubits, a method that is sensitive to faultytwo-qubit gates and which requires significant experimental overhead. We propose a hardware-efficient multi-qubit parity measurement exploiting the bifurcation dynamics of a parametrically driven nonlinear oscillator. This approach takes advantage of the resonator’s parametric oscillation threshold which is a function of the joint parity of dispersively coupled qubits, leading to high-amplitude oscillations for one parity subspace and no oscillation for the other. We present analytical and numerical results for two- and four-qubit parity measurements with high-fidelity readout preserving the parity eigenpaces. Moreover, we discuss a possible realization which can be readily implemented with the current circuit QED experimental toolbox. These results could lead to significant simplifications in the experimental implementation of quantum error correction, and notably of the surface code.
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmonartificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with 0.2% residual excitation in less than 500ns. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.
Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided intosubroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of 50kHz using the emitted photons which are absorbed at the receiving node with a probability of 98.1±0.1% achieving a transfer process fidelity of 80.02±0.07%. We also prepare on demand remote entanglement with a fidelity as high as 78.9±0.1%. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.
The realization of a high-efficiency microwave single photon detector is a long-standing problem in the field of microwave quantum optics. Here we propose a quantum non-demolition,high-efficiency photon detector that can readily be implemented in present state-of-the-art circuit quantum electrodynamics. This scheme works in a continuous fashion, gaining information about the arrival time of the photon as well as about its presence. The key insight that allows to circumvent the usual limitations imposed by measurement back-action is the use of long-lived dark states in a small ensemble of inhomogeneous artificial atoms to increase the interaction time between the photon and the measurement device. Using realistic system parameters, we show that large detection fidelities are possible.