Superconducting cavities with high quality factors, coupled to a fixed-frequency transmon, provide a state-of-the-art platform for quantum information storage and manipulation. Thecommonly used selective number-dependent arbitrary phase (SNAP) gate faces significant challenges in ultra-high-coherence cavities, where the weak dispersive shifts necessary for preserving high coherence typically result in prolonged gate times. Here, we propose a protocol to achieve high-fidelity SNAP gates that are orders of magnitude faster than the standard implementation, surpassing the speed limit set by the bare dispersive shift. We achieve this enhancement by dynamically amplifying the dispersive coupling via sideband interactions, followed by quantum optimal control on the Floquet-engineered system. We also present a unified perturbation theory that explains both the gate acceleration and the associated benign drive-induced decoherence, corroborated by Floquet-Markov simulations. These results pave the way for the experimental realization of high-fidelity, selective control of weakly coupled, high-coherence cavities, and expanding the scope of optimal control techniques to a broader class of Floquet quantum systems.
Superconducting radio-frequency (SRF) cavities offer a promising platform for quantum computing due to their long coherence times and large accessible Hilbert spaces, yet integratingnonlinear elements like transmons for control often introduces additional loss. We report a multimode quantum system based on a 2-cell elliptical shaped SRF cavity, comprising two cavity modes weakly coupled to an ancillary transmon circuit, designed to preserve coherence while enabling efficient control of the cavity modes. We mitigate the detrimental effects of the transmon decoherence through careful design optimization that reduces transmon-cavity couplings and participation in the dielectric substrate and lossy interfaces, to achieve single-photon lifetimes of 20.6 ms and 15.6 ms for the two modes, and a pure dephasing time exceeding 40 ms. This marks an order-of-magnitude improvement over prior 3D multimode memories. Leveraging sideband interactions and novel error-resilient protocols, including measurement-based correction and post-selection, we achieve high-fidelity control over quantum states. This enables the preparation of Fock states up to N=20 with fidelities exceeding 95%, the highest reported to date to the authors‘ knowledge, as well as two-mode entanglement with coherence-limited fidelities reaching up to 99.9% after post-selection. These results establish our platform as a robust foundation for quantum information processing, allowing for future extensions to high-dimensional qudit encodings.
exhibits a robust ground-state degeneracy and wave functions with disjoint support for appropriate circuit parameters."]In this protected regime, Cooper-pair excitons form the relevant low-energy excitations. Based on a full circuit analysis of the current-mirror device, we introduce an effective model that systematically captures the relevant low-energy degrees of freedom, and is amenable to diagonalization using Density Matrix Renormalization Group (DMRG) methods. We find excellent agreement between DMRG and exact diagonalization, and can push DMRG simulations to much larger circuit sizes than feasible for exact diagonalization. We discuss the spectral properties of the current-mirror circuit, and predict coherence times exceeding 1 ms in parameter regimes believed to be within reach of experiments.
Condensed matter physics has been driven forward by significant experimental and theoretical progress in the study and understanding of equilibrium phase transitions based on symmetryand topology. However, nonequilibrium phase transitions have remained a challenge, in part due to their complexity in theoretical descriptions and the additional experimental difficulties in systematically controlling systems out of equilibrium. Here, we study a one-dimensional chain of 72 microwave cavities, each coupled to a superconducting qubit, and coherently drive the system into a nonequilibrium steady state. We find experimental evidence for a dissipative phase transition in the system in which the steady state changes dramatically as the mean photon number is increased. Near the boundary between the two observed phases, the system demonstrates bistability, with characteristic switching times as long as 60 ms — far longer than any of the intrinsic rates known for the system. This experiment demonstrates the power of circuit QED systems for studying nonequilibrium condensed matter physics and paves the way for future experiments exploring nonequilbrium physics with many-body quantum optics.
Microwave photons inside lattices of coupled resonators and superconducting qubits can exhibit surprising matter-like behavior. Realizing such open-system quantum simulators presentsan experimental challenge and requires new tools and measurement techniques. Here, we introduce Scanning Defect Microscopy as one such tool and illustrate its use in mapping the normal-mode structure of microwave photons inside a 49-site Kagome lattice of coplanar waveguide resonators. Scanning is accomplished by moving a probe equipped with a sapphire tip across the lattice. This locally perturbs resonator frequencies and induces shifts of the lattice resonance frequencies which we determine by measuring the transmission spectrum. From the magnitude of mode shifts we can reconstruct photon field amplitudes at each lattice site and thus create spatial images of the photon-lattice normal modes.