Spectator Errors in Tunable Coupling Architectures

  1. D. M. Zajac,
  2. J. Stehlik,
  3. D. L. Underwood,
  4. T. Phung,
  5. J. Blair,
  6. S. Carnevale,
  7. D. Klaus,
  8. G. A. Keefe,
  9. A. Carniol,
  10. M. Kumph,
  11. Matthias Steffen,
  12. and O. E. Dial
The addition of tunable couplers to superconducting quantum architectures offers significant advantages for scaling compared to fixed coupling approaches. In principle, tunable couplers
allow for exact cancellation of qubit-qubit coupling through the interference of two parallel coupling pathways between qubits. However, stray microwave couplings can introduce additional pathways which complicate the interference effect. Here we investigate the primary spectator induced errors of the bus below qubit (BBQ) architecture in a six qubit device. We identify the key design parameters which inhibit ideal cancellation and demonstrate that dynamic cancellation pulses can further mitigate spectator errors.

Tunable Coupling Architecture for Fixed-frequency Transmons

  1. J. Stehlik,
  2. D. M. Zajac,
  3. D. L. Underwood,
  4. T. Phung,
  5. J. Blair,
  6. S. Carnevale,
  7. D. Klaus,
  8. G. A. Keefe,
  9. A. Carniol,
  10. M. Kumph,
  11. Matthias Steffen,
  12. and O. E. Dial
Implementation of high-fidelity two-qubit operations is a key ingredient for scalable quantum error correction. In superconducting qubit architectures tunable buses have been explored
as a means to higher fidelity gates. However, these buses introduce new pathways for leakage. Here we present a modified tunable bus architecture appropriate for fixed-frequency qubits in which the adiabaticity restrictions on gate speed are reduced. We characterize this coupler on a range of two-qubit devices achieving a maximum gate fidelity of 99.85%. We further show the calibration is stable over one day.

Imaging Photon Lattice States by Scanning Defect Microscopy

  1. D. L. Underwood,
  2. W. E. Shanks,
  3. Andy C. Y. Li,
  4. Lamia Ateshian,
  5. Jens Koch,
  6. and A. A. Houck
Microwave photons inside lattices of coupled resonators and superconducting qubits can exhibit surprising matter-like behavior. Realizing such open-system quantum simulators presents
an experimental challenge and requires new tools and measurement techniques. Here, we introduce Scanning Defect Microscopy as one such tool and illustrate its use in mapping the normal-mode structure of microwave photons inside a 49-site Kagome lattice of coplanar waveguide resonators. Scanning is accomplished by moving a probe equipped with a sapphire tip across the lattice. This locally perturbs resonator frequencies and induces shifts of the lattice resonance frequencies which we determine by measuring the transmission spectrum. From the magnitude of mode shifts we can reconstruct photon field amplitudes at each lattice site and thus create spatial images of the photon-lattice normal modes.