Superconducting quantum processors are a compelling platform for analog quantum simulation due to the precision control, fast operation, and site-resolved readout inherent to the hardware.Arrays of coupled superconducting qubits natively emulate the dynamics of interacting particles according to the Bose-Hubbard model. However, many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields. Here, we emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator. We realize a broadly adjustable synthetic magnetic vector potential by applying continuous modulation tones to all qubits. We verify that the synthetic vector potential obeys requisite properties of electromagnetism: a spatially-varying vector potential breaks time-reversal symmetry and generates a gauge-invariant synthetic magnetic field, and a temporally-varying vector potential produces a synthetic electric field. We demonstrate that the Hall effect–the transverse deflection of a charged particle propagating in an electromagnetic field–exists in the presence of the synthetic electromagnetic field.
Routing quantum information between non-local computational nodes is a foundation for extensible networks of quantum processors. Quantum information can be transferred between arbitrarynodes by photons that propagate between them, or by resonantly coupling nearby nodes. Notably, conventional approaches involving propagating photons have limited fidelity due to photon loss and are often unidirectional, whereas architectures that use direct resonant coupling are bidirectional in principle, but can generally accommodate only a few local nodes. Here, we demonstrate high-fidelity, on-demand, bidirectional photon emission using an artificial molecule comprising two superconducting qubits strongly coupled to a waveguide. Quantum interference between the photon emission pathways from the molecule generate single photons that selectively propagate in a chosen direction. This architecture is capable of both photon emission and capture, and can be tiled in series to form an extensible network of quantum processors with all-to-all connectivity.
Dielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms. We study the dielectric loss of hexagonal boron nitride(hBN) thin films in the microwave regime by measuring the quality factor of parallel-plate capacitors (PPCs) made of NbSe2-hBN-NbSe2 heterostructures integrated into superconducting circuits. The extracted microwave loss tangent of hBN is bounded to be at most in the mid-10-6 range in the low temperature, single-photon regime. We integrate hBN PPCs with aluminum Josephson junctions to realize transmon qubits with coherence times reaching 25 μs, consistent with the hBN loss tangent inferred from resonator measurements. The hBN PPC reduces the qubit feature size by approximately two-orders of magnitude compared to conventional all-aluminum coplanar transmons. Our results establish hBN as a promising dielectric for building high-coherence quantum circuits with substantially reduced footprint and, with a high energy participation that helps to reduce unwanted qubit cross-talk.