Quantum annealing with a network of all-to-all connected, two-photon driven Kerr nonlinear oscillators

  1. Shruti Puri,
  2. Christian Kraglund Andersen,
  3. Arne L. Grimsmo,
  4. and Alexandre Blais
Quantum annealing aims to solve combinatorial optimization problems mapped on to Ising interactions between quantum spins. A critical factor that limits the success of a quantum annealer
is its sensitivity to noise, and intensive research is consequently focussed towards developing noise-resilient annealers. Here we propose a new paradigm for quantum annealing with a scalable network of all-to-all connected, two-photon driven Kerr-nonlinear resonators. Each of these resonators encode an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. The fully-connected optimization problem is mapped onto local fields driving the resonators, which are themselves connected by local four-body interactions. We describe an adiabatic annealing protocol in this system and analyze its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, making it a promising platform for implementing a large scale quantum Ising machine. Finally, we propose a realistic implementation of this scheme in circuit QED.

Resonator reset in circuit QED by optimal control for large open quantum systems

  1. Samuel Boutin,
  2. Christian Kraglund Andersen,
  3. Jayameenakshi Venkatraman,
  4. Andrew J. Ferris,
  5. and Alexandre Blais
We study an implementation of the open GRAPE (Gradient Ascent Pulse Engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control
algorithms for open quantum systems rely on a transformation to Liouville space, our implementation avoid this transformation which leads to a polynomial speed-up of the open GRAPE algorithm in cases of interest. As an example, we apply our implementation to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized to steer the cavity state towards its ground state as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes leading to a reset time over four times faster than typical passive reset.

Squeezing and quantum state engineering with Josephson traveling wave amplifiers

  1. Arne L. Grimsmo,
  2. and Alexandre Blais
We develop a quantum theory describing the input-output properties of Josephson traveling wave parametric amplifiers. This allows us to show how such a device can be used as a source
of nonclassical radiation, and how dispersion engineering can be used to tailor gain profiles and squeezing spectra with attractive properties, ranging from genuinely broadband spectra to „squeezing combs“ consisting of a number of discrete entangled quasimodes. The device’s output field can be used to generate a multi-mode squeezed bath–a powerful resource for dissipative quantum state preparation. In particular, we show how it can be used to generate continuous variable cluster states that are universal for measurement based quantum computing. The favourable scaling properties of the preparation scheme makes it a promising path towards continuous variable quantum computing in the microwave regime.

Ultrastrong coupling dynamics with a transmon qubit

  1. Christian Kraglund Andersen,
  2. and Alexandre Blais
The interaction of light and matter is often described by the exchange of single excitations. When the coupling strength is a significant fraction of the system frequencies, the number
of excitations are no longer preserved and that simple picture breaks down. This regime is known as the ultrastrong coupling regime and is characterized by non-trivial light-matter eigenstates and complex dynamics. In this work, we propose to use a an array Josephson junctions to increase the impedance of the light mode enabling ultrastrong coupling to a transmon qubit. We show that the resulting dynamics can be generated and probed by taking advantage of the multi-mode structure of the junction array. This proposal relies on the frequency tunability of the transmon and, crucially, on the use of a low frequency mode of the array, which allows for non-adiabatic changes of the ground state.

Hamiltonian engineering for robust quantum state transfer and qubit readout in cavity QED

  1. Félix Beaudoin,
  2. Alexandre Blais,
  3. and W. A. Coish
Quantum state transfer into a memory, state shuttling over long distances via a quantum bus, and high-fidelity readout are important tasks for quantum technology. Realizing these tasks
is challenging in the presence of realistic couplings to an environment. Here, we introduce and assess protocols that can be used in cavity QED to perform high-fidelity quantum state transfer and fast quantum nondemolition qubit readout through Hamiltonian engineering. We show that high-fidelity state transfer between a cavity and a single qubit or between a cavity and the collective mode of a qubit ensemble can be performed, even in the limit of strong dephasing due to inhomogeneous broadening. Moreover, we show that large signal-to-noise and high single-shot fidelity can be achieved in a cavity-based qubit readout, even in the weak-coupling limit. These ideas may be important for novel systems coupling single spins to a microwave cavity.

High-fidelity resonator-induced phase gate with single-mode squeezing

  1. Shruti Puri,
  2. and Alexandre Blais
We propose to increase the fidelity of two-qubit resonator-induced phase gates in circuit QED by the use of narrowband single-mode squeezed drive. We show that there exists an optimal
squeezing angle and strength that erases qubit ‚which-path‘ information leaking out of the cavity and thereby minimizes qubit dephasing during these gates. Our analytical results for the gate fidelity are in excellent agreement with numerical simulations of a cascaded master equation that takes into account the dynamics of the source of squeezed radiation. With realistic parameters, we find that it is possible to realize a controlled-phase gate with a gate time of 200 ns and average infidelity of 10−5.

Fast quantum non-demolition readout from longitudinal qubit-oscillator interaction

  1. Nicolas Didier,
  2. Jérôme Bourassa,
  3. and Alexandre Blais
We show how to realize high-fidelity quantum non-demolition qubit readout using longitudinal qubit-oscillator interaction. This is realized by modulating the longitudinal coupling at
the cavity frequency. The qubit-oscillator interaction then acts as a qubit-state dependent drive on the cavity, a situation that is fundamentally different from the standard dispersive case. Single-mode squeezing can be exploited to exponentially increase the signal-to-noise ratio of this readout protocol. We present an implementation of this idea in circuit quantum electrodynamics and a possible multi-qubit architecture.

On-chip superconducting microwave circulator from synthetic rotation

  1. Joseph Kerckhoff,
  2. Kevin Lalumière,
  3. Benjamin J. Chapman,
  4. Alexandre Blais,
  5. and K. W. Lehnert
We analyze the design of a potential replacement technology for the commercial ferrite circulators that are ubiquitous in contemporary quantum superconducting microwave experiments.
The lossless, lumped element design is capable of being integrated on chip with other superconducting microwave devices, thus circumventing the many performance-limiting aspects of ferrite circulators. The design is based on the dynamic modulation of DC superconducting microwave quantum interference devices (SQUIDs) that function as nearly linear, tunable inductors. The connection to familiar ferrite-based circulators is a simple frame boost in the internal dynamics‘ equation of motion. In addition to the general, schematic analysis, we also give an overview of many considerations necessary to achieve a practical design with a tunable center frequency in the 4-8 GHz frequency band, a bandwidth of 240 MHz, reflections at the -20 dB level, and a maximum signal power of approximately order 100 microwave photons per inverse bandwidth.

Heisenberg-limited qubit readout with two-mode squeezed light

  1. Nicolas Didier,
  2. Archana Kamal,
  3. Alexandre Blais,
  4. and Aashish A. Clerk
We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement,
and crucially, is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities, and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics free subspace). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.

Photon-mediated interactions between distant artificial atoms

  1. Arjan F. van Loo,
  2. Arkady Fedorov,
  3. Kevin Lalumière,
  4. Barry C. Sanders,
  5. Alexandre Blais,
  6. and Andreas Wallraff
Photon-mediated interactions between atoms are of fundamental importance in quantum optics, quantum simulations and quantum information processing. The exchange of real and virtual
photons between atoms gives rise to non-trivial interactions the strength of which decreases rapidly with distance in three dimensions. Here we study much stronger photon mediated interactions using two superconducting qubits in an open onedimensional transmission line. Making use of the unique possibility to tune these qubits by more than a quarter of their transition frequency we observe both coherent exchange interactions at an effective separation of 3λ/4 and the creation of super- and sub-radiant states at a separation of one photon wavelength λ. This system is highly suitable for exploring collective atom/photon interactions and applications in quantum communication technology.