Qubit Parity Measurement by Parametric Driving in Circuit QED

  1. Baptiste Royer,
  2. Shruti Puri,
  3. and Alexandre Blais
Multi-qubit parity measurements are essential to quantum error correction. Current realizations of these measurements often rely on ancilla qubits, a method that is sensitive to faulty
two-qubit gates and which requires significant experimental overhead. We propose a hardware-efficient multi-qubit parity measurement exploiting the bifurcation dynamics of a parametrically driven nonlinear oscillator. This approach takes advantage of the resonator’s parametric oscillation threshold which is a function of the joint parity of dispersively coupled qubits, leading to high-amplitude oscillations for one parity subspace and no oscillation for the other. We present analytical and numerical results for two- and four-qubit parity measurements with high-fidelity readout preserving the parity eigenpaces. Moreover, we discuss a possible realization which can be readily implemented with the current circuit QED experimental toolbox. These results could lead to significant simplifications in the experimental implementation of quantum error correction, and notably of the surface code.

Fast and Unconditional All-Microwave Reset of a Superconducting Qubit

  1. Paul Magnard,
  2. Philipp Kurpiers,
  3. Baptiste Royer,
  4. Theo Walter,
  5. Jean-Claude Besse,
  6. Simone Gasparinetti,
  7. Marek Pechal,
  8. Johannes Heinsoo,
  9. Simon Storz,
  10. Alexandre Blais,
  11. and Andreas Wallraff
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmon
artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with 0.2% residual excitation in less than 500ns. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.

Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons

  1. Philipp Kurpiers,
  2. Paul Magnard,
  3. Theo Walter,
  4. Baptiste Royer,
  5. Marek Pechal,
  6. Johannes Heinsoo,
  7. Yves Salathé,
  8. Abdulkadir Akin,
  9. Simon Storz,
  10. Jean-Claude Besse,
  11. Simone Gasparinetti,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided into
subroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of 50kHz using the emitted photons which are absorbed at the receiving node with a probability of 98.1±0.1% achieving a transfer process fidelity of 80.02±0.07%. We also prepare on demand remote entanglement with a fidelity as high as 78.9±0.1%. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.

Itinerant microwave photon detector

  1. Baptiste Royer,
  2. Arne L. Grimsmo,
  3. Alexandre Choquette-Poitevin,
  4. and Alexandre Blais
The realization of a high-efficiency microwave single photon detector is a long-standing problem in the field of microwave quantum optics. Here we propose a quantum non-demolition,
high-efficiency photon detector that can readily be implemented in present state-of-the-art circuit quantum electrodynamics. This scheme works in a continuous fashion, gaining information about the arrival time of the photon as well as about its presence. The key insight that allows to circumvent the usual limitations imposed by measurement back-action is the use of long-lived dark states in a small ensemble of inhomogeneous artificial atoms to increase the interaction time between the photon and the measurement device. Using realistic system parameters, we show that large detection fidelities are possible.

Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers

  1. Samuel Boutin,
  2. David M. Toyli,
  3. Aditya V. Venkatramani,
  4. Andrew W. Eddins,
  5. Irfan Siddiqi,
  6. and Alexandre Blais
Single-mode Josephson junction-based parametric amplifiers are often modeled as perfect amplifiers and squeezers. We show that, in practice, the gain, quantum efficiency, and output
field squeezing of these devices are limited by usually neglected higher-order corrections to the idealized model. To arrive at this result, we derive the leading corrections to the lumped-element Josephson parametric amplifier of three common pumping schemes: monochromatic current pump, bichromatic current pump, and monochromatic flux pump. We show that the leading correction for the last two schemes is a single Kerr-type quartic term, while the first scheme contains additional cubic terms. In all cases, we find that the corrections are detrimental to squeezing. In addition, we show that the Kerr correction leads to a strongly phase-dependent reduction of the quantum efficiency of a phase-sensitive measurement. Finally, we quantify the departure from ideal Gaussian character of the filtered output field from numerical calculation of third and fourth order cumulants. Our results show that, while a Gaussian output field is expected for an ideal Josephson parametric amplifier, higher-order corrections lead to non-Gaussian effects which increase with both gain and nonlinearity strength. This theoretical study is complemented by experimental characterization of the output field of a flux-driven Josephson parametric amplifier. In addition to a measurement of the squeezing level of the filtered output field, the Husimi Q-function of the output field is imaged by the use of a deconvolution technique and compared to numerical results. This work establishes nonlinear corrections to the standard degenerate parametric amplifier model as an important contribution to Josephson parametric amplifier’s squeezing and noise performance.

Widely tunable on-chip microwave circulator for superconducting quantum circuits

  1. Benjamin J. Chapman,
  2. Eric I. Rosenthal,
  3. Joseph Kerckhoff,
  4. Bradley A. Moores,
  5. Leila R. Vale,
  6. Gene C. Hilton,
  7. Kevin Lalumière,
  8. Alexandre Blais,
  9. and K. W. Lehnert
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency
conversion and delay, and requires neither permanent magnets nor microwave control tones, allowing on-chip integration with other superconducting circuits without expensive control hardware. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

Quantum annealing with a network of all-to-all connected, two-photon driven Kerr nonlinear oscillators

  1. Shruti Puri,
  2. Christian Kraglund Andersen,
  3. Arne L. Grimsmo,
  4. and Alexandre Blais
Quantum annealing aims to solve combinatorial optimization problems mapped on to Ising interactions between quantum spins. A critical factor that limits the success of a quantum annealer
is its sensitivity to noise, and intensive research is consequently focussed towards developing noise-resilient annealers. Here we propose a new paradigm for quantum annealing with a scalable network of all-to-all connected, two-photon driven Kerr-nonlinear resonators. Each of these resonators encode an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. The fully-connected optimization problem is mapped onto local fields driving the resonators, which are themselves connected by local four-body interactions. We describe an adiabatic annealing protocol in this system and analyze its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, making it a promising platform for implementing a large scale quantum Ising machine. Finally, we propose a realistic implementation of this scheme in circuit QED.

Resonator reset in circuit QED by optimal control for large open quantum systems

  1. Samuel Boutin,
  2. Christian Kraglund Andersen,
  3. Jayameenakshi Venkatraman,
  4. Andrew J. Ferris,
  5. and Alexandre Blais
We study an implementation of the open GRAPE (Gradient Ascent Pulse Engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control
algorithms for open quantum systems rely on a transformation to Liouville space, our implementation avoid this transformation which leads to a polynomial speed-up of the open GRAPE algorithm in cases of interest. As an example, we apply our implementation to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized to steer the cavity state towards its ground state as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes leading to a reset time over four times faster than typical passive reset.

Squeezing and quantum state engineering with Josephson traveling wave amplifiers

  1. Arne L. Grimsmo,
  2. and Alexandre Blais
We develop a quantum theory describing the input-output properties of Josephson traveling wave parametric amplifiers. This allows us to show how such a device can be used as a source
of nonclassical radiation, and how dispersion engineering can be used to tailor gain profiles and squeezing spectra with attractive properties, ranging from genuinely broadband spectra to „squeezing combs“ consisting of a number of discrete entangled quasimodes. The device’s output field can be used to generate a multi-mode squeezed bath–a powerful resource for dissipative quantum state preparation. In particular, we show how it can be used to generate continuous variable cluster states that are universal for measurement based quantum computing. The favourable scaling properties of the preparation scheme makes it a promising path towards continuous variable quantum computing in the microwave regime.

Ultrastrong coupling dynamics with a transmon qubit

  1. Christian Kraglund Andersen,
  2. and Alexandre Blais
The interaction of light and matter is often described by the exchange of single excitations. When the coupling strength is a significant fraction of the system frequencies, the number
of excitations are no longer preserved and that simple picture breaks down. This regime is known as the ultrastrong coupling regime and is characterized by non-trivial light-matter eigenstates and complex dynamics. In this work, we propose to use a an array Josephson junctions to increase the impedance of the light mode enabling ultrastrong coupling to a transmon qubit. We show that the resulting dynamics can be generated and probed by taking advantage of the multi-mode structure of the junction array. This proposal relies on the frequency tunability of the transmon and, crucially, on the use of a low frequency mode of the array, which allows for non-adiabatic changes of the ground state.