Itinerant microwave photon detector

  1. Baptiste Royer,
  2. Arne L. Grimsmo,
  3. Alexandre Choquette-Poitevin,
  4. and Alexandre Blais
The realization of a high-efficiency microwave single photon detector is a long-standing problem in the field of microwave quantum optics. Here we propose a quantum non-demolition,
high-efficiency photon detector that can readily be implemented in present state-of-the-art circuit quantum electrodynamics. This scheme works in a continuous fashion, gaining information about the arrival time of the photon as well as about its presence. The key insight that allows to circumvent the usual limitations imposed by measurement back-action is the use of long-lived dark states in a small ensemble of inhomogeneous artificial atoms to increase the interaction time between the photon and the measurement device. Using realistic system parameters, we show that large detection fidelities are possible.

Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers

  1. Samuel Boutin,
  2. David M. Toyli,
  3. Aditya V. Venkatramani,
  4. Andrew W. Eddins,
  5. Irfan Siddiqi,
  6. and Alexandre Blais
Single-mode Josephson junction-based parametric amplifiers are often modeled as perfect amplifiers and squeezers. We show that, in practice, the gain, quantum efficiency, and output
field squeezing of these devices are limited by usually neglected higher-order corrections to the idealized model. To arrive at this result, we derive the leading corrections to the lumped-element Josephson parametric amplifier of three common pumping schemes: monochromatic current pump, bichromatic current pump, and monochromatic flux pump. We show that the leading correction for the last two schemes is a single Kerr-type quartic term, while the first scheme contains additional cubic terms. In all cases, we find that the corrections are detrimental to squeezing. In addition, we show that the Kerr correction leads to a strongly phase-dependent reduction of the quantum efficiency of a phase-sensitive measurement. Finally, we quantify the departure from ideal Gaussian character of the filtered output field from numerical calculation of third and fourth order cumulants. Our results show that, while a Gaussian output field is expected for an ideal Josephson parametric amplifier, higher-order corrections lead to non-Gaussian effects which increase with both gain and nonlinearity strength. This theoretical study is complemented by experimental characterization of the output field of a flux-driven Josephson parametric amplifier. In addition to a measurement of the squeezing level of the filtered output field, the Husimi Q-function of the output field is imaged by the use of a deconvolution technique and compared to numerical results. This work establishes nonlinear corrections to the standard degenerate parametric amplifier model as an important contribution to Josephson parametric amplifier’s squeezing and noise performance.

Widely tunable on-chip microwave circulator for superconducting quantum circuits

  1. Benjamin J. Chapman,
  2. Eric I. Rosenthal,
  3. Joseph Kerckhoff,
  4. Bradley A. Moores,
  5. Leila R. Vale,
  6. Gene C. Hilton,
  7. Kevin Lalumière,
  8. Alexandre Blais,
  9. and K. W. Lehnert
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency
conversion and delay, and requires neither permanent magnets nor microwave control tones, allowing on-chip integration with other superconducting circuits without expensive control hardware. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

Quantum annealing with a network of all-to-all connected, two-photon driven Kerr nonlinear oscillators

  1. Shruti Puri,
  2. Christian Kraglund Andersen,
  3. Arne L. Grimsmo,
  4. and Alexandre Blais
Quantum annealing aims to solve combinatorial optimization problems mapped on to Ising interactions between quantum spins. A critical factor that limits the success of a quantum annealer
is its sensitivity to noise, and intensive research is consequently focussed towards developing noise-resilient annealers. Here we propose a new paradigm for quantum annealing with a scalable network of all-to-all connected, two-photon driven Kerr-nonlinear resonators. Each of these resonators encode an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. The fully-connected optimization problem is mapped onto local fields driving the resonators, which are themselves connected by local four-body interactions. We describe an adiabatic annealing protocol in this system and analyze its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, making it a promising platform for implementing a large scale quantum Ising machine. Finally, we propose a realistic implementation of this scheme in circuit QED.

Resonator reset in circuit QED by optimal control for large open quantum systems

  1. Samuel Boutin,
  2. Christian Kraglund Andersen,
  3. Jayameenakshi Venkatraman,
  4. Andrew J. Ferris,
  5. and Alexandre Blais
We study an implementation of the open GRAPE (Gradient Ascent Pulse Engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control
algorithms for open quantum systems rely on a transformation to Liouville space, our implementation avoid this transformation which leads to a polynomial speed-up of the open GRAPE algorithm in cases of interest. As an example, we apply our implementation to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized to steer the cavity state towards its ground state as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes leading to a reset time over four times faster than typical passive reset.

Squeezing and quantum state engineering with Josephson traveling wave amplifiers

  1. Arne L. Grimsmo,
  2. and Alexandre Blais
We develop a quantum theory describing the input-output properties of Josephson traveling wave parametric amplifiers. This allows us to show how such a device can be used as a source
of nonclassical radiation, and how dispersion engineering can be used to tailor gain profiles and squeezing spectra with attractive properties, ranging from genuinely broadband spectra to „squeezing combs“ consisting of a number of discrete entangled quasimodes. The device’s output field can be used to generate a multi-mode squeezed bath–a powerful resource for dissipative quantum state preparation. In particular, we show how it can be used to generate continuous variable cluster states that are universal for measurement based quantum computing. The favourable scaling properties of the preparation scheme makes it a promising path towards continuous variable quantum computing in the microwave regime.

Ultrastrong coupling dynamics with a transmon qubit

  1. Christian Kraglund Andersen,
  2. and Alexandre Blais
The interaction of light and matter is often described by the exchange of single excitations. When the coupling strength is a significant fraction of the system frequencies, the number
of excitations are no longer preserved and that simple picture breaks down. This regime is known as the ultrastrong coupling regime and is characterized by non-trivial light-matter eigenstates and complex dynamics. In this work, we propose to use a an array Josephson junctions to increase the impedance of the light mode enabling ultrastrong coupling to a transmon qubit. We show that the resulting dynamics can be generated and probed by taking advantage of the multi-mode structure of the junction array. This proposal relies on the frequency tunability of the transmon and, crucially, on the use of a low frequency mode of the array, which allows for non-adiabatic changes of the ground state.

Hamiltonian engineering for robust quantum state transfer and qubit readout in cavity QED

  1. Félix Beaudoin,
  2. Alexandre Blais,
  3. and W. A. Coish
Quantum state transfer into a memory, state shuttling over long distances via a quantum bus, and high-fidelity readout are important tasks for quantum technology. Realizing these tasks
is challenging in the presence of realistic couplings to an environment. Here, we introduce and assess protocols that can be used in cavity QED to perform high-fidelity quantum state transfer and fast quantum nondemolition qubit readout through Hamiltonian engineering. We show that high-fidelity state transfer between a cavity and a single qubit or between a cavity and the collective mode of a qubit ensemble can be performed, even in the limit of strong dephasing due to inhomogeneous broadening. Moreover, we show that large signal-to-noise and high single-shot fidelity can be achieved in a cavity-based qubit readout, even in the weak-coupling limit. These ideas may be important for novel systems coupling single spins to a microwave cavity.

High-fidelity resonator-induced phase gate with single-mode squeezing

  1. Shruti Puri,
  2. and Alexandre Blais
We propose to increase the fidelity of two-qubit resonator-induced phase gates in circuit QED by the use of narrowband single-mode squeezed drive. We show that there exists an optimal
squeezing angle and strength that erases qubit ‚which-path‘ information leaking out of the cavity and thereby minimizes qubit dephasing during these gates. Our analytical results for the gate fidelity are in excellent agreement with numerical simulations of a cascaded master equation that takes into account the dynamics of the source of squeezed radiation. With realistic parameters, we find that it is possible to realize a controlled-phase gate with a gate time of 200 ns and average infidelity of 10−5.

Fast quantum non-demolition readout from longitudinal qubit-oscillator interaction

  1. Nicolas Didier,
  2. Jérôme Bourassa,
  3. and Alexandre Blais
We show how to realize high-fidelity quantum non-demolition qubit readout using longitudinal qubit-oscillator interaction. This is realized by modulating the longitudinal coupling at
the cavity frequency. The qubit-oscillator interaction then acts as a qubit-state dependent drive on the cavity, a situation that is fundamentally different from the standard dispersive case. Single-mode squeezing can be exploited to exponentially increase the signal-to-noise ratio of this readout protocol. We present an implementation of this idea in circuit quantum electrodynamics and a possible multi-qubit architecture.