I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
06
Okt
2021
Efficient Quantum Gate Discovery with Optimal Control
Optimal control theory provides a framework for numerical discovery of device controls that implement quantum logic gates, but common objective functions used for optimization often
assign arbitrarily high costs to otherwise useful controls. We propose a framework for designing objective functions that permit novel gate designs such as echo pulses or locally-equivalent gates. We use numerical simulations to demonstrate the efficacy of the new objective functions by designing microwave-only pulses that act as entangling gates for superconducting transmon architectures. We observe that the proposed objective functions lead to higher fidelity controls in fewer optimization iterations than obtainable by traditional objective functions.
Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected Qubits
Obtaining high-fidelity and robust quantum gates is the key for scalable quantum computation, and one of the promising ways is to implement quantum gates using geometric phases, where
the influence of local noises can be greatly reduced. To obtain robust quantum gates, we here propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique, where the imperfection control induced X-error can be greatly suppressed. Moreover, to be robust against the decoherence effect and the randomized qubit-frequency shift Z-error, our scheme is also proposed based on the polariton qubit, the eigenstates of the light-matter interaction, which is immune to both errors up to the second order, due to its near symmetric energy spectrum. Finally, our scheme is implemented on the superconducting circuits, which also simplifies previous implementations. Since the main errors can be greatly reduced in our proposal, it provides a promising strategy for scalable solid-state fault-tolerant quantum computation.
Ac losses in field-cooled type I superconducting cavities
As superconductors are cooled below their critical temperature, stray magnetic flux can become trapped in regions that remain normal. The presence of trapped flux facilitates dissipation
of ac current in a superconductor, leading to losses in superconducting elements of microwave devices. In type II superconductors, dissipation is well-understood in terms of the dynamics of vortices hosting a single flux quantum. In contrast, the ac response of type I superconductors with trapped flux has not received much attention. Building on Andreev’s early work [Sov. Phys. JETP 24, 1019 (1967)], here we show theoretically that the dominant dissipation mechanism is the absorption of the ac field at the exposed surfaces of the normal regions, while the deformation of the superconducting/normal interfaces is unimportant. We use the developed theory to estimate the degradation of the quality factors in field-cooled cavities, and we satisfactorily compare these theoretical estimates to the measured field dependence of the quality factors of two aluminum cavities.
04
Okt
2021
Optimization of the resonator-induced phase gate for superconducting qubits
The resonator-induced phase gate is a two-qubit operation in which driving a bus resonator induces a state-dependent phase shift on the qubits equivalent to an effective ZZ interaction.
In principle, the dispersive nature of the gate offers flexibility for qubit parameters. However, the drive can cause resonator and qubit leakage, the physics of which cannot be fully captured using either the existing Jaynes-Cummings or Kerr models. In this paper, we adopt an ab-initio model based on Josephson nonlinearity for transmon qubits. The ab-initio analysis agrees well with the Kerr model in terms of capturing the effective ZZ interaction in the weak-drive dispersive regime. In addition, however, it reveals numerous leakage transitions involving high-excitation qubit states. We analyze the physics behind such novel leakage channels, demonstrate the connection with specific qubits-resonator frequency collisions, and lay out a plan towards device parameter optimization. We show this type of leakage can be substantially suppressed using very weakly anharmonic transmons. In particular, weaker qubit anharmonicity mitigates both collision density and leakage amplitude, while larger qubit frequency moves the collisions to occur only at large anharmonicity not relevant to experiment. Our work is broadly applicable to the physics of weakly anharmonic transmon qubits coupled to linear resonators. In particular, our analysis confirms and generalizes the measurement-induced state transitions noted in Sank et al. (Phys. Rev. Lett. 117, 190503) and lays the groundwork for both strong-drive resonator-induced phase gate implementation and strong-drive dispersive qubit measurement.
Essentially exact numerical modelling of flux qubit chains subject to charge and flux noise
We present an essentially exact numerical method for modelling flux qubit chains subject to charge and flux noise. We define an essentially exact method as one that introduces errors
that are completely controlled such that they can be made arbitrarily small by tuning the simulation parameters. The method adopts the quasi-adiabatic path integral formalism to express the system’s reduced density matrix as a time-discretized path integral, comprising a series of influence functionals that encode the non-Markovian dynamics of the system. We present a detailed derivation of the path integral expression for the system’s reduced density matrix and describe in detail the tensor network algorithm used to evaluate the path integral expression. We have implemented our method in an open-sourced Python library called „spinbosonchain“. When appropriate, we draw connections between concepts covered in this manuscript and the library’s code.
Mediated interactions beyond the nearest neighbor in an array of superconducting qubits
We consider mediated interactions in an array of floating transmons, where each qubit capacitor consists of two superconducting pads galvanically isolated from ground. Each such pair
contributes two quantum degrees of freedom, one of which is used as a qubit, while the other remains fixed. However, these extraneous modes can generate coupling between the qubit modes that extends beyond the nearest neighbor. We present a general formalism describing the formation of this coupling and calculate it for a one-dimensional chain of transmons. We show that the strength of coupling and its range (that is, the exponential falloff) can be tuned independently via circuit design to realize a continuum from nearest-neighbor-only interactions to interactions that extend across the length of the chain. We present designs with capacitance and microwave simulations showing that various interaction configurations can be achieved in realistic circuits. Such coupling could be used in analog simulation of different quantum regimes or to increase connectivity in digital quantum systems. Thus mechanism must also be taken into account in other types of qubits with extraneous modes.
01
Okt
2021
The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors
We introduce a Xilinx RFSoC-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short) which supports the direct synthesis of control pulses with carrier
frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC (RF System-on-Chip) FPGA \cite{zcu111}, custom firmware and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system, as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average Clifford gate fidelity of avg=99.93%. All of the schematics, firmware, and software are open-source \cite{QICKrepo}.
Fast Flux Entangling Gate for Fluxonium Circuits
We analyze a high-fidelity two-qubit gate using fast flux pulses on superconducting fluxonium qubits. The gate is realized by temporarily detuning magnetic flux through fluxonium loop
away from the half flux quantum sweet spot. We simulate dynamics of two capacitively coupled fluxoniums during the flux pulses and optimize the pulse parameters to obtain a highly accurate iswap‾‾‾‾‾‾√-like entangling gate. We also evaluate the effect of the flux noise and qubit relaxation on the gate fidelity. Our results demonstrate that the gate error remains below 10−4 for currently achievable magnitude of the flux noise and qubit relaxation time.
30
Sep
2021
Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers
The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear
phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplification and noise generation for key case study input states (Fock and coherents). Furthermore, we present an analysis of the output signals generated by the parametric amplification mechanism when thermal noise fluctuations feed the device.
29
Sep
2021
Predicting Dynamics of Transmon Qubit-Cavity Systems with Recurrent Neural Networks
Developing accurate and computationally inexpensive models for the dynamics of open-quantum systems is critical in designing new qubit platforms by first understanding their mechanisms
of decoherence and dephasing. Current models based on solutions to master equations are not sufficient in capturing the non-Markovian dynamics at play and suffer from large computational costs. Here, we present a method of overcoming this by using a recurrent neural network to obtain effective solutions to the Lindblad master equation for a coupled transmon qubit-cavity system. We present the training and testing performance of the model trained a simulated dataset and demonstrate its ability to map microscopic dissipative mechanisms to quantum observables.