Single flux quantum (SFQ) circuitry is a promising candidate for a scalable and integratable cryogenic quantum control system. However, the operation of SFQ circuits introduces non-equilibriumquasiparticles (QPs), which are a significant source of qubit decoherence. In this study, we investigate QP behavior in a superconducting quantum-classical hybrid chip that comprises an SFQ circuit and a qubit circuit. By monitoring qubit relaxation time, we explore the dynamics of SFQ-circuit-induced QPs. Our findings reveal that the QP density near the qubit reaches its peak after several microseconds of SFQ circuit operation, which corresponds to the phonon-mediated propagation time of QPs in the hybrid circuits. This suggests that phonon-mediated propagation dominates the spreading of QPs in the hybrid circuits. Our results lay the foundation to suppress QP poisoning in quantum-classical hybrid systems.
Single-flux-quantum (SFQ) circuits have great potential in building cryogenic quantum-classical interfaces for scaling up superconducting quantum processors. SFQ-based quantum gateshave been designed and realized. However, current control schemes are difficult to tune the driving strength to qubits, which restricts the gate length and usually induces leakage to unwanted levels. In this study, we design the scheme and corresponding pulse generator circuit to continuously adjust the driving strength by coupling SFQ pulses with variable intervals. This scheme not only provides a way to adjust the SFQ-based gate length, but also proposes the possibility to tune the driving strength envelope. Simulations show that our scheme can suppress leakage to unwanted levels and reduce the error of SFQ-based Clifford gates by more than an order of magnitude.
Superconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature stateof the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii–Kosterlitz–Thouless (BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an external magnetic field is added, the effective spins of the XY model become frustrated, leading to the formation of topological defects (vortices). Here we observe the many-body dynamics of such an array, including frustration, via its coupling to a superconducting microwave cavity. We take the design of the transmon qubit, but replace the single junction between two antenna pads with the complete array. This allows us to probe the system at 10 mK with minimal self-heating by using weak coherent states at the single (microwave) photon level to probe the resonance frequency of the cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array.
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to fiveorders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an „impedance-matched“ artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. We attain a single-photon detection efficiency of 0.66±0.06 with a reset time of ∼400~ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.
We propose a scheme for continuous detection of itinerant microwave photons in circuit quantum electrodynamics. In the proposed device, a superconducting qubit is coupled dispersivelyto two resonators: one is used to form an impedance-matched Λ system that deterministically captures incoming photons, and the other is used for continuous monitoring of the event. The present scheme enables efficient photon detection: for realistic system parameters, the detection efficiency reaches 0.9 with a bandwidth of about ten megahertz.
By properly driving a qubit-resonator system in the strong dispersive regime, we implement an „impedance-matched“ Λ system in the dressed states, where a resonant singlephoton deterministically induces a Raman transition and excites the qubit. Combining this effect and a fast dispersive readout of the qubit, we realize a detector of itinerant microwave photons. We theoretically analyze the single-photon response of the Λ system and evaluate its performance as a detector. We achieve a high detection efficiency close to unity without relying on precise temporal control of the input pulse shape and under a conservative estimate of the system parameters. The detector can also be reset quickly by applying microwave pulses, which allows a short dead time and a high repetition rate.